\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Estimating two time-varying reaction coefficients in a water quality model from inexact initial and boundary data

  • *Corresponding author: Nguyen Trung Thành

    *Corresponding author: Nguyen Trung Thành 

This research was supported by the Vingroup Innovation Foundation under grant number VINIF.2020.DA16.

Abstract / Introduction Full Text(HTML) Figure(8) Related Papers Cited by
  • An inverse problem of identifying two time-varying reaction coefficients in a system of one-dimensional advection-reaction equations is investigated. The system is used for modeling the transportation of pollutants in rivers or streams. The coefficients to be identified represent the deoxygenation and reaeration rates. All the initial and boundary data in the model are assumed to contain noise. Lipschitz-type stability estimates of the coefficients are obtained. The proofs of the stability estimates are based on a Carleman estimate for a first-order transport operator. For numerical computation, the coefficient identification problem is reformulated as an optimization problem using the least-squares method coupled with the adjoint equation method for computing the gradient of the objective functional. Error estimates are derived and numerical examples are provided for demonstrating the performance of the proposed algorithm.

    Mathematics Subject Classification: Primary: 35R30; Secondary: 35Q49.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Exact and reconstructed coefficients $ k_d $ and $ k_r $ in Example 1. (a)-(b): Using the $ H^1 $ data; (c)-(d): Using the $ L^2 $ data

    Figure 2.  Noisy data and the solution of the forward problem at $ x = L $ in Example 1. (a)-(b): $ H^1 $ data; (c)-(d): $ L^2 $ data

    Figure 3.  Exact and reconstructed coefficients $ k_d $ and $ k_r $ in Example 2 using the $ H^1 $ data

    Figure 4.  Exact and reconstructed coefficients $ k_d $ and $ k_r $ in Example 2 using the $ L^2 $ data

    Figure 5.  Exact and reconstructed coefficients $ k_d $ and $ k_r $ in Example 1 using $ H^1 $ data in $ t\in [0.3465, 2] $

    Figure 6.  Exact and reconstructed coefficients $ k_d $ and $ k_r $ in Example 1 using $ L^2 $ data in $ t\in [0.3465, 2] $

    Figure 7.  Exact and reconstructed coefficients $ k_d $ and $ k_r $ in Example 2 using $ H^1 $ data in $ t\in [0.3465, 2] $

    Figure 8.  Exact and reconstructed coefficients $ k_d $ and $ k_r $ in Example 2 using $ L^2 $ data in $ t\in [0.3465, 2] $

  • [1] R. B. Ambrose Jr. and T. A. Wool, WASP8 Stream Transport-Model Theory and User's Guide, 2017., U.S. Environmental Protection Agency.
    [2] M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer Monographs in Mathematics, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.
    [3] M. Benedini and G. Tsakiris, Water Quality Modelling for Rivers and Streams, Springer Science, 2013. doi: 10.1007/978-94-007-5509-3.
    [4] L. C. Brown and T. O. Barnwell, The Enhanced Stream Water Quality Models QUAL2E-UNCAS: Documentation and User Manual, EPA/600/3/87/007, Env. Res. Lab., Athens, GA, 1987.
    [5] A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272. 
    [6] P. Cannarsa, G. Floridia, F. Gölgeleyen and M. Yamamoto, Inverse coefficient problems for a transport equation by local Carleman estimate, Inverse Problems, 35 (2019), 105013, 22. doi: 10.1088/1361-6420/ab1c69.
    [7] G. Floridia and H. Takase, Inverse problems for first-order hyperbolic equations with time-dependent coefficients, Journal of Differential Equations, 305 (2021), 45-71.  doi: 10.1016/j.jde.2021.10.007.
    [8] P. Gaitan and H. Ouzzane, Inverse problem for a free transport equation using Carleman estimates, Appl. Anal., 93 (2014), 1073-1086.  doi: 10.1080/00036811.2013.816686.
    [9] C. Gandolfi, A. Krasewski and R. Soncini-Sessa, River water quality modeling, In V. P. Singh and W. H. Hager, editors, Environmental Hydraulics, Springer, (1996), 245-288. doi: 10.1007/978-94-015-8664-1_8.
    [10] F. Gölgeleyen and M. Yamamoto, Stability for some inverse problems for transport equations, SIAM J. Math. Anal., 48 (2016), 2319-2344.  doi: 10.1137/15M1038128.
    [11] D. N. Hào, N. T. Thành, N. V. Duc and N. V. Thang, A coefficient identification problem for a system of advection-diffusion-reaction equations in water quality modeling, Journal of Inverse and Ill-posed Problems, to appear.
    [12] D. N. HàoN. T. ThànhN. V. Duc and N. V. Thang, A coefficient identification problem for a system of advection-reaction equations in water quality modeling, Computers & Mathematics with Applications, 148 (2023), 126-150.  doi: 10.1016/j.camwa.2023.08.005.
    [13] M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, Journal of Inverse and Ill-Posed Problems, 21 (2013), 477-560.  doi: 10.1515/jip-2012-0072.
    [14] M. V. Klibanov and S. E. Pamyatnykh, Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate, J. Math. Anal. Appl., 343 (2008), 352-365.  doi: 10.1016/j.jmaa.2008.01.071.
    [15] A. J. Koivo, Identification of mathematical models for DO and BOD concentrations in polluted streams from noise corrupted measurements, Water Resources Research, 17 (1971), 853-862.  doi: 10.1029/WR007i004p00853.
    [16] A. J. Koivo and G. Phillips, Optimal estimation of DO, BOD, and stream parameters using a dynamic discrete time model, Water Resources Research, 12 (1976), 705-711.  doi: 10.1029/WR012i004p00705.
    [17] D. P. Loucks and E. van Beek, Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications, Springer, 2017. doi: 10.1007/978-3-319-44234-1.
    [18] D. J. O'Connor, The temporal and spatial distribution of dissolved oxygen in streams, Water Resour. Res., 3 (1967), 65-79.  doi: 10.1029/WR003i001p00065.
    [19] S. Rinaldi, R. Soncini-Sessa, H. Stehfest and H. Tamura, Modeling and Control of River Quality, McGraw-Hill, London, 1979.
    [20] J. L. Schnoor, Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil, Wiley-Interscience, Honoken, NJ, 1996.
    [21] H. W. Streeter and E. B. Phelps, A study of the pollution and natural purification of the Ohio River, Public Health Bulletin, III, 146, 1925.
  • 加载中

Figures(8)

SHARE

Article Metrics

HTML views(797) PDF downloads(204) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return