\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal harvesting for a logistic model with grazing

  • *Corresponding author: Sarath Sasi

    *Corresponding author: Sarath Sasi

The second author was supported by the Department of Science and Technology INSPIRE Fellowship of the Government of India.

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • We consider semi-linear elliptic equations of the following form:

    $ \begin{equation*} \left\{ \begin{aligned} -\Delta u & = \lambda[u-\dfrac{u^2}{K}-c \dfrac{u^2}{1+u^2}-h(x) u] = :\lambda f_h(u) &&{\rm{in}} \; \Omega, \\ \frac{\partial u}{\partial \eta}&+qu = 0 &&{\rm{on}} \; \partial\Omega, \end{aligned} \right. \end{equation*} $

    where, $ h\in U = \{h\in L^2(\Omega): 0\leq h(x)\leq H\}. $ We prove the existence and uniqueness of the positive solution for large $ \lambda. $ Further, we establish the existence of an optimal control $ h\in U $ that maximizes the functional $ J(h) = \int_{\Omega}h(x)u_h(x)\; {\rm{d}}x-\int_{\Omega}(B_1+B_2 h(x))h(x)\; {\rm{d}}x $ over $ U $, where $ u_h $ is the unique positive solution of the above problem associated with $ h $, $ B_1>0 $ is the cost per unit effort when the level of effort is low and $ B_2>0 $ represents the rate at which the cost rises as more labor is employed. Finally, we provide a unique optimality system.

    Mathematics Subject Classification: Primary: 49J20, 49K20, 92D25, 92D40; Secondary: 35J05, 35P05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graph of $ f_{h_{\beta}} $ with $ \beta = 0.1, $ $ K = 17, $ and $ c = 1.5 $

    Figure 2.  Graphs illustrating the arguments given in Proposition 2.2

  • [1] R. A. Adams and J. J. F. Fournier, Sobolev spaces, Pure and Applied Mathematics (Amsterdam), Elsevier, 140 (2003).
    [2] N. Barlow, Harvesting models for resource-limited populations, New Zealand Journal of Ecology, (1987), 129-133.
    [3] A. CañadaJ. L. Gámez and J. A. Montero, Study of an optimal control problem for diffusive nonlinear elliptic equations of logistic type, SIAM Journal on Control and Optimization, 36 (1998), 1171-1189.  doi: 10.1137/S0363012995293323.
    [4] R. S. Cantrell and C. Cosner, Density dependent behavior at habitat boundaries and the Allee effect, Bulletin of Mathematical Biology, 69 (2007), 2339-2360.  doi: 10.1007/s11538-007-9222-0.
    [5] C. W. Clark, Bioeconomic Modelling and Fisheries Management, New York: Wiley, 1985.
    [6] W. Ding and S. Lenhart, Optimal harvesting of a spatially explicit fishery model, Natural Resource Modeling, 22 (2009), 173-211.  doi: 10.1111/j.1939-7445.2008.00033.x.
    [7] M. Mallick, et al., Bifurcation, uniqueness and multiplicity results for classes of reaction diffusion equations arising in ecology with nonlinear boundary conditions, Communications on Pure & Applied Analysis, (2021), 705-726. doi: 10.3934/cpaa.2021195.
    [8] G. FragnelliD. Mugnai and N. S. Papageorgiou, The Brezis-Oswald result for quasilinear Robin problems, Advanced Nonlinear Studies, 16 (2016), 603-622.  doi: 10.1515/ans-2016-0010.
    [9] L. Gerber, et al., Population models for marine reserve design: A retrospective and prospective synthesis, Ecological Applications, 13 (2003), 47-64.
    [10] H. S. Gordon, The economic theory of a common-property resource: The fishery, Journal of Political Economy, 62 (1954).  doi: 10.1086/257497.
    [11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing Inc, 1985.
    [12] S. Heikkilä and V. Lakshmikantham, Monotone iterative techniques for discontinuous nonlinear differential equations, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 181 (1994).
    [13] J. Jiang and J. Shi, Bistability dynamics in some structured ecological models, Spatial Ecology, Chapman & Hall/CRC, Mathematical and Computational Biology Series, (2010), 33-62. doi: 10.1201/9781420059861.ch3.
    [14] E. LeeS. Sasi and R. Shivaji, S-shaped bifurcation curves in ecosystems, Journal of Mathematical Analysis and Applications, 381 (2011), 732-741.  doi: 10.1016/j.jmaa.2011.03.048.
    [15] E. LeeS. Sasi and R. Shivaji, An ecological model with a $\Sigma$-shaped bifurcation curve, Nonlinear Analysis: Real World Applications, 13 (2012), 634-642.  doi: 10.1016/j.nonrwa.2011.07.054.
    [16] A. Leung and S. Stojanovic, Optimal control for elliptic Volterra-Lotka type equations, Journal of Mathematical Analysis and Applications, 173 (1993), 603-619.  doi: 10.1006/jmaa.1993.1091.
    [17] R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269 (1977), 471-477. 
    [18] M. G. Neubert, Marine reserves and optimal harvesting, Ecology Letters, 6 (2003), 843-849.  doi: 10.1046/j.1461-0248.2003.00493.x.
    [19] I. Noy-Meir, Stability of grazing systems an application of predator-prey graphs, The Journal of Ecology, 63 (1975), 459-482.  doi: 10.2307/2258730.
    [20] J. Sanchirico and J. Wilen, A bioeconomic model of marine reserve creation, Journal of Environmental Economics and Management, 42 (2001), 257-276.  doi: 10.1006/jeem.2000.1162.
    [21] J. Sanchirico and J. Wilen, Optimal spatial management of renewable resources: Matching policy scope to ecosystem scale, Journal of Environmental Economics and Management, 50 (2005), 23-46.  doi: 10.1016/j.jeem.2004.11.001.
    [22] J. Steele and E. Henderson, Modelling long term fluctuations in fish stocks, Science, 224 (1984), 985-987.  doi: 10.1126/science.224.4652.985.
    [23] E. Van Nes and M. Scheffer, Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems, Ecology, 86 (2005), 1797-1807.  doi: 10.1890/04-0550.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(733) PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return