January  2009, 16: 56-62. doi: 10.3934/era.2009.16.56

A note on L-series and Hodge spectrum of polynomials

1. 

Departament d'Algebra i Geometria. Universitat de Barcelona, Gran Via, 585. E-08007, Spain

Received  July 2009 Revised  September 2009 Published  December 2009

We compare on the one hand the combinatorial procedure described in [1] which gives a lower bound for the Newton polygon of the $L$-function attached to a commode, non-degenerate polynomial with coefficients in a finite field and on the other hand the procedure which gives the Hodge theoretical spectrum at infinity of a polynomial with complex coefficients and with the same Newton polyhedron. The outcome is that they are essentially the same, thus providing a Hodge theoretical interpretation of the Adolphson-Sperber lower bound which was conjectured in [1].
Citation: Ricardo García López. A note on L-series and Hodge spectrum of polynomials. Electronic Research Announcements, 2009, 16: 56-62. doi: 10.3934/era.2009.16.56
[1]

Gennady Bachman. Exponential sums with multiplicative coefficients. Electronic Research Announcements, 1999, 5: 128-135.

[2]

Damiano Foschi. Some remarks on the $L^p-L^q$ boundedness of trigonometric sums and oscillatory integrals. Communications on Pure & Applied Analysis, 2005, 4 (3) : 569-588. doi: 10.3934/cpaa.2005.4.569

[3]

Assane Lo, Nasser-eddine Tatar. Exponential stabilization of a structure with interfacial slip. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6285-6306. doi: 10.3934/dcds.2016073

[4]

Fabien Durand, Alejandro Maass. A note on limit laws for minimal Cantor systems with infinite periodic spectrum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 745-750. doi: 10.3934/dcds.2003.9.745

[5]

Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765

[6]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[7]

Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4537-4554. doi: 10.3934/dcds.2018198

[8]

James Benn. Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group. Journal of Geometric Mechanics, 2016, 8 (1) : 1-12. doi: 10.3934/jgm.2016.8.1

[9]

Irena Lasiecka, Roberto Triggiani. Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1515-1543. doi: 10.3934/cpaa.2016001

[10]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019195

[11]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[12]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[13]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 15-29. doi: 10.3934/dcdsb.2011.16.15

[14]

C. T. Cremins, G. Infante. A semilinear $A$-spectrum. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 235-242. doi: 10.3934/dcdss.2008.1.235

[15]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[16]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[17]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[18]

Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1

[19]

Tomoharu Suda. Construction of Lyapunov functions using Helmholtz–Hodge decomposition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2437-2454. doi: 10.3934/dcds.2019103

[20]

Joshua L. Mike, Vasileios Maroulas. Combinatorial Hodge theory for equitable kidney paired donation. Foundations of Data Science, 2019, 1 (1) : 87-101. doi: 10.3934/fods.2019004

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]