2010, 17: 104-121. doi: 10.3934/era.2010.17.104

Notes on monotone Lagrangian twist tori

1. 

Moscow Center for Continuous Mathematical Education, B. Vlasievsky per. 11, Moscow 121002, Russian Federation

2. 

Institut de Mathématiques, Université de Neuchâtel, Rue Émile Argand 11, CP 158, 2009 Neuchâtel, Switzerland

Received  April 2010 Revised  July 2010 Published  October 2010

We construct monotone Lagrangian tori in the standard symplectic vector space, in the complex projective space and in products of spheres. We explain how to classify these Lagrangian tori up to symplectomorphism and Hamiltonian isotopy, and how to show that they are not displaceable by Hamiltonian isotopies.
Citation: Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104
References:
[1]

P. Albers and U. Frauenfelder, A non-displaceable Lagrangian torus in $T^$*$S^2$, Comm. Pure Appl. Math., 61 (2008), 1046-1051. doi: doi:10.1002/cpa.20216.  Google Scholar

[2]

V. I. Arnold, On a characteristic class entering into conditions of quantization, Funkcional. Anal. i Prilozen., 1 (1967), 1-14. doi: doi:10.1007/BF01075861.  Google Scholar

[3]

D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol., 1 (2007), 51-91.  Google Scholar

[4]

P. Biran and O. Cornea, A Lagrangian quantum homology, in "New Perspectives and Challenges in Symplectic Field Theory," CRM Proc. Lecture Notes 49, AMS, (2009), 1-44.  Google Scholar

[5]

P. Biran and O. Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol., 13 (2009), 2881-2989. doi: doi:10.2140/gt.2009.13.2881.  Google Scholar

[6]

Yu. V. Chekanov, Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z., 223 (1996), 547-559.  Google Scholar

[7]

Yu. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226. doi: doi:10.1215/S0012-7094-98-09506-0.  Google Scholar

[8]

Yu. Chekanov and F. Schlenk, Twist tori I: Construction and classification,, in preparation., ().   Google Scholar

[9]

Yu. Chekanov and F. Schlenk, Twist tori II: Non-displaceability,, in preparation., ().   Google Scholar

[10]

C.-H. Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not., 35 (2004), 1803-1843. doi: doi:10.1155/S1073792804132716.  Google Scholar

[11]

D. Eisenbud, "Commutative Algebra. With a View Toward Algebraic Geometry," Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.  Google Scholar

[12]

Ya. Eliashberg and L. Polterovich, The problem of Lagrangian knots in four-manifolds, in "Geometric Topology (Athens, GA, 1993)," AMS/IP Stud. Adv. Math. 2.1, AMS, (1997), 313-327.  Google Scholar

[13]

Ya. Eliashberg and L. Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds,, , ().   Google Scholar

[14]

M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compos. Math., 145 (2009), 773-826. doi: doi:10.1112/S0010437X0900400X.  Google Scholar

[15]

A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.  Google Scholar

[16]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, "Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I," AMS/IP Studies in Advanced Mathematics 46.1, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[17]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, "Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part II," AMS/IP Studies in Advanced Mathematics 46.2, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[18]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in $S^2 \times S^2$,, \arXiv{1002.1660}., ().   Google Scholar

[19]

A. Gadbled, Exotic Hamiltonian tori in $\CP^2$ and $S^2 \times S^2$,, in preparation., ().   Google Scholar

[20]

M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. math., 82 (1985), 307-347.  Google Scholar

[21]

H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A , 115 (1990), 25-38.  Google Scholar

[22]

C. Weibel, "An Introduction to Homological Algebra," Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994.  Google Scholar

show all references

References:
[1]

P. Albers and U. Frauenfelder, A non-displaceable Lagrangian torus in $T^$*$S^2$, Comm. Pure Appl. Math., 61 (2008), 1046-1051. doi: doi:10.1002/cpa.20216.  Google Scholar

[2]

V. I. Arnold, On a characteristic class entering into conditions of quantization, Funkcional. Anal. i Prilozen., 1 (1967), 1-14. doi: doi:10.1007/BF01075861.  Google Scholar

[3]

D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol., 1 (2007), 51-91.  Google Scholar

[4]

P. Biran and O. Cornea, A Lagrangian quantum homology, in "New Perspectives and Challenges in Symplectic Field Theory," CRM Proc. Lecture Notes 49, AMS, (2009), 1-44.  Google Scholar

[5]

P. Biran and O. Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol., 13 (2009), 2881-2989. doi: doi:10.2140/gt.2009.13.2881.  Google Scholar

[6]

Yu. V. Chekanov, Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z., 223 (1996), 547-559.  Google Scholar

[7]

Yu. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226. doi: doi:10.1215/S0012-7094-98-09506-0.  Google Scholar

[8]

Yu. Chekanov and F. Schlenk, Twist tori I: Construction and classification,, in preparation., ().   Google Scholar

[9]

Yu. Chekanov and F. Schlenk, Twist tori II: Non-displaceability,, in preparation., ().   Google Scholar

[10]

C.-H. Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not., 35 (2004), 1803-1843. doi: doi:10.1155/S1073792804132716.  Google Scholar

[11]

D. Eisenbud, "Commutative Algebra. With a View Toward Algebraic Geometry," Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.  Google Scholar

[12]

Ya. Eliashberg and L. Polterovich, The problem of Lagrangian knots in four-manifolds, in "Geometric Topology (Athens, GA, 1993)," AMS/IP Stud. Adv. Math. 2.1, AMS, (1997), 313-327.  Google Scholar

[13]

Ya. Eliashberg and L. Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds,, , ().   Google Scholar

[14]

M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compos. Math., 145 (2009), 773-826. doi: doi:10.1112/S0010437X0900400X.  Google Scholar

[15]

A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.  Google Scholar

[16]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, "Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I," AMS/IP Studies in Advanced Mathematics 46.1, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[17]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, "Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part II," AMS/IP Studies in Advanced Mathematics 46.2, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[18]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in $S^2 \times S^2$,, \arXiv{1002.1660}., ().   Google Scholar

[19]

A. Gadbled, Exotic Hamiltonian tori in $\CP^2$ and $S^2 \times S^2$,, in preparation., ().   Google Scholar

[20]

M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. math., 82 (1985), 307-347.  Google Scholar

[21]

H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A , 115 (1990), 25-38.  Google Scholar

[22]

C. Weibel, "An Introduction to Homological Algebra," Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994.  Google Scholar

[1]

Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811

[2]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[3]

Mario Jorge Dias Carneiro, Rafael O. Ruggiero. On the graph theorem for Lagrangian minimizing tori. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6029-6045. doi: 10.3934/dcds.2018260

[4]

Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1

[5]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[6]

Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471

[7]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021, 11 (3) : 658-679. doi: 10.3934/mcrf.2021017

[8]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[9]

Shengbing Deng, Fethi Mahmoudi, Monica Musso. Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3035-3076. doi: 10.3934/dcds.2016.36.3035

[10]

Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291

[11]

Krzysztof Frączek. Polynomial growth of the derivative for diffeomorphisms on tori. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 489-516. doi: 10.3934/dcds.2004.11.489

[12]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, 2021, 29 (4) : 2637-2644. doi: 10.3934/era.2021005

[13]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[14]

Adrian Constantin. Solitons from the Lagrangian perspective. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 469-481. doi: 10.3934/dcds.2007.19.469

[15]

Andrew James Bruce, Katarzyna Grabowska, Giovanni Moreno. On a geometric framework for Lagrangian supermechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 411-437. doi: 10.3934/jgm.2017016

[16]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[17]

Masoud Sabzevari, Joël Merker, Samuel Pocchiola. Canonical Cartan connections on maximally minimal generic submanifolds $\mathbf{M^5 \subset \mathbb{C}^4}$. Electronic Research Announcements, 2014, 21: 153-166. doi: 10.3934/era.2014.21.153

[18]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[19]

Gianluca Gorni, Gaetano Zampieri. Lagrangian dynamics by nonlocal constants of motion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2751-2759. doi: 10.3934/dcdss.2020216

[20]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (144)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]