\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimally sparse 3D approximations using shearlet representations

Abstract Related Papers Cited by
  • This paper introduces a new Parseval frame, based on the 3-D shearlet representation, which is especially designed to capture geometric features such as discontinuous boundaries with very high efficiency. We show that this approach exhibits essentially optimal approximation properties for 3-D functions $f$ which are smooth away from discontinuities along $C^2$ surfaces. In fact, the $N$ term approximation $f_N^S$ obtained by selecting the $N$ largest coefficients from the shearlet expansion of $f$ satisfies the asymptotic estimate

    ||$f-f_N^S$||$_2^2$ ≍ $N^{-1} (\log N)^2, as N \to \infty.$

    Up to the logarithmic factor, this is the optimal behavior for functions in this class and significantly outperforms wavelet approximations, which only yields a $N^{-1/2}$ rate. Indeed, the wavelet approximation rate was the best published nonadaptive result so far and the result presented in this paper is the first nonadaptive construction which is provably optimal (up to a loglike factor) for this class of 3-D data.
        Our estimate is consistent with the corresponding 2-D (essentially) optimally sparse approximation results obtained by the authors using 2-D shearlets and by Candès and Donoho using curvelets.

    Mathematics Subject Classification: 42C15, 42C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with $C^2$ singularities, Comm. Pure Appl. Math., 57 (2004), 219-266.doi: doi:10.1002/cpa.10116.

    [2]

    F. Colonna, G. Easley, K. Guo and D. Labate, Radon transform inversion using the shearlet representation, Appl. Comput. Harmon. Anal., 29 (2010), 232-250.doi: doi:10.1016/j.acha.2009.10.005.

    [3]

    D. L. Donoho, Wedgelets: Nearly-minimax estimation of edges, Annals of Statistics, 27 (1999), 859-897.doi: doi:10.1214/aos/1018031261.

    [4]

    D. L. Donoho, Sparse components of images and optimal atomic decomposition, Constr. Approx., 17 (2001), 353-382.doi: doi:10.1007/s003650010032.

    [5]

    D. L. Donoho and G. Kutyniok., Microlocal analysis of the geometric separation problem, preprint, (2010).

    [6]

    D. L. Donoho, M. Vetterli, R. A. DeVore and I. Daubechies, Data compression and harmonic analysis, IEEE Trans. Inform. Th., 44 (1998), 2435-2476.doi: doi:10.1109/18.720544.

    [7]

    G. R. Easley, D. Labate and F. Colonna, Shearlet-based total variation diffusion for denoising, IEEE Trans. Image Proc., 18 (2009), 260-268.doi: doi:10.1109/TIP.2008.2008070.

    [8]

    G. R. Easley, D. Labate and W. Lim, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25 (2008), 25-46.doi: doi:10.1016/j.acha.2007.09.003.

    [9]

    K. Guo, G. Kutyniok and D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, in "Wavelets and Splines" (G. Chen and M. Lai, eds.), Nashboro Press, Nashville, TN, (2006), 189-201.

    [10]

    K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets, SIAM J. Math. Anal., 9 (2007), 298-318.doi: doi:10.1137/060649781.

    [11]

    K. Guo and D. Labate, Characterization and analysis of edges using the continuous shearlet transform, SIAM J. Imag. Sci., 2 (2009), 959-986.doi: doi:10.1137/080741537.

    [12]

    K. Guo and D. Labate, "Optimally Sparse Representations of 3D Data with $C^2$ Surface Singularities Using Parseval Frames of Shearlets," Technical Report, University of Houston, 2010.

    [13]

    K. Guo, W.-Q Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite dilations, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 78-87.doi: doi:10.1090/S1079-6762-04-00132-5.

    [14]

    K. Guo, W-Q. Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite dilations and their MRA properties, Appl. Computat. Harmon. Anal., 20 (2006), 231-249.doi: doi:10.1007/0-8176-4504-7_11.

    [15]

    G. Kutyniok and W. Lim, Compactly supported shearlets are optimally sparse, preprint, (2010).

    [16]

    G. Kutyniok and T. Sauer., Adaptive directional subdivision schemes and shearlet multiresolution analysis, SIAM J. Math. Anal., 41 (2009), 1436-1471.doi: doi:10.1137/08072276X.

    [17]

    G. Kutyniok, M. Shahram and D. L. Donoho., Development of a digital shearlet transform based on pseudo-polar FFT, in "Wavelets XIII" (San Diego, CA, 2009), SPIE Proc. 7446, SPIE, Bellingham, WA, (2009), 74460B-1-74460B-13.

    [18]

    S. Mallat, "A Wavelet Tour of Signal Processing. The Sparse Way," Academic Press, San Diego, CA, 2009.

    [19]

    E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, NJ, 1970.

    [20]

    S. Yi, D. Labate, G. R. Easley and H. Krim, A Shearlet approach to edge analysis and detection, IEEE Trans. Image Process, 18 (2009), 929-941.doi: doi:10.1109/TIP.2009.2013082.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return