Advanced Search
Article Contents
Article Contents

Optimally sparse 3D approximations using shearlet representations

Abstract Related Papers Cited by
  • This paper introduces a new Parseval frame, based on the 3-D shearlet representation, which is especially designed to capture geometric features such as discontinuous boundaries with very high efficiency. We show that this approach exhibits essentially optimal approximation properties for 3-D functions $f$ which are smooth away from discontinuities along $C^2$ surfaces. In fact, the $N$ term approximation $f_N^S$ obtained by selecting the $N$ largest coefficients from the shearlet expansion of $f$ satisfies the asymptotic estimate

    ||$f-f_N^S$||$_2^2$ ≍ $N^{-1} (\log N)^2, as N \to \infty.$

    Up to the logarithmic factor, this is the optimal behavior for functions in this class and significantly outperforms wavelet approximations, which only yields a $N^{-1/2}$ rate. Indeed, the wavelet approximation rate was the best published nonadaptive result so far and the result presented in this paper is the first nonadaptive construction which is provably optimal (up to a loglike factor) for this class of 3-D data.
        Our estimate is consistent with the corresponding 2-D (essentially) optimally sparse approximation results obtained by the authors using 2-D shearlets and by Candès and Donoho using curvelets.

    Mathematics Subject Classification: 42C15, 42C40.


    \begin{equation} \\ \end{equation}
  • [1]

    E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with $C^2$ singularities, Comm. Pure Appl. Math., 57 (2004), 219-266.doi: doi:10.1002/cpa.10116.


    F. Colonna, G. Easley, K. Guo and D. Labate, Radon transform inversion using the shearlet representation, Appl. Comput. Harmon. Anal., 29 (2010), 232-250.doi: doi:10.1016/j.acha.2009.10.005.


    D. L. Donoho, Wedgelets: Nearly-minimax estimation of edges, Annals of Statistics, 27 (1999), 859-897.doi: doi:10.1214/aos/1018031261.


    D. L. Donoho, Sparse components of images and optimal atomic decomposition, Constr. Approx., 17 (2001), 353-382.doi: doi:10.1007/s003650010032.


    D. L. Donoho and G. Kutyniok., Microlocal analysis of the geometric separation problem, preprint, (2010).


    D. L. Donoho, M. Vetterli, R. A. DeVore and I. Daubechies, Data compression and harmonic analysis, IEEE Trans. Inform. Th., 44 (1998), 2435-2476.doi: doi:10.1109/18.720544.


    G. R. Easley, D. Labate and F. Colonna, Shearlet-based total variation diffusion for denoising, IEEE Trans. Image Proc., 18 (2009), 260-268.doi: doi:10.1109/TIP.2008.2008070.


    G. R. Easley, D. Labate and W. Lim, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25 (2008), 25-46.doi: doi:10.1016/j.acha.2007.09.003.


    K. Guo, G. Kutyniok and D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, in "Wavelets and Splines" (G. Chen and M. Lai, eds.), Nashboro Press, Nashville, TN, (2006), 189-201.


    K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets, SIAM J. Math. Anal., 9 (2007), 298-318.doi: doi:10.1137/060649781.


    K. Guo and D. Labate, Characterization and analysis of edges using the continuous shearlet transform, SIAM J. Imag. Sci., 2 (2009), 959-986.doi: doi:10.1137/080741537.


    K. Guo and D. Labate, "Optimally Sparse Representations of 3D Data with $C^2$ Surface Singularities Using Parseval Frames of Shearlets," Technical Report, University of Houston, 2010.


    K. Guo, W.-Q Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite dilations, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 78-87.doi: doi:10.1090/S1079-6762-04-00132-5.


    K. Guo, W-Q. Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite dilations and their MRA properties, Appl. Computat. Harmon. Anal., 20 (2006), 231-249.doi: doi:10.1007/0-8176-4504-7_11.


    G. Kutyniok and W. Lim, Compactly supported shearlets are optimally sparse, preprint, (2010).


    G. Kutyniok and T. Sauer., Adaptive directional subdivision schemes and shearlet multiresolution analysis, SIAM J. Math. Anal., 41 (2009), 1436-1471.doi: doi:10.1137/08072276X.


    G. Kutyniok, M. Shahram and D. L. Donoho., Development of a digital shearlet transform based on pseudo-polar FFT, in "Wavelets XIII" (San Diego, CA, 2009), SPIE Proc. 7446, SPIE, Bellingham, WA, (2009), 74460B-1-74460B-13.


    S. Mallat, "A Wavelet Tour of Signal Processing. The Sparse Way," Academic Press, San Diego, CA, 2009.


    E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, NJ, 1970.


    S. Yi, D. Labate, G. R. Easley and H. Krim, A Shearlet approach to edge analysis and detection, IEEE Trans. Image Process, 18 (2009), 929-941.doi: doi:10.1109/TIP.2009.2013082.

  • 加载中

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint