Citation: |
[1] |
J. F. Aarnes, Quasi-states and quasi-measures, Adv. Math., 86 (1991), 41-67.doi: 10.1016/0001-8708(91)90035-6. |
[2] |
L. Buhovski, The 2/3 - convergence rate for the Poisson bracket, Geom. Funct. Anal., 19 (2010), 1620-1649.doi: 10.1007/s00039-010-0045-z. |
[3] |
F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.doi: 10.1215/00127094-2008-036. |
[4] |
M. Entov and L. Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv., 81 (2006), 75-99.doi: 10.4171/CMH/43. |
[5] |
M. Entov and L. Polterovich, ($C^0$)-rigidity of Poisson brackets, Symplectic topology and measure preserving dynamical systems, 25-32, Contemp. Math., 512, Amer. Math. Soc., Providence, RI, 2010. |
[6] |
M. Entov, L. Polterovich and D. Rosen, Poisson brackets, quasi-states and symplectic integrators, preprint, arXiv:0910.1980. |
[7] |
M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Q., Special Issue: In honor of Grigory Margulis. Part 1, 3 (2007), 1037-1055. |
[8] |
H. Federer, "Geometric Measure Theory," Die Grundl. der math. Wiss., vol. 153, Springer-Verlag New York Inc., New York 1969. |
[9] |
C. Pearcy and A. Shields, Almost commuting matrices, J. Funct. Anal., 33 (1979), 332-338.doi: 10.1016/0022-1236(79)90071-5. |
[10] |
F. Zapolsky, Quasi-states and the Poisson bracket on surfaces, J. Mod. Dyn., 1 (2007), 465-475. |