2010, 17: 57-67. doi: 10.3934/era.2010.17.57

Linear approximate groups

1. 

Laboratoire de Mathématiques, Bâtiment 425, Université Paris Sud 11, 91405 Orsay, France

2. 

Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

3. 

Department of Mathematics, UCLA, 405 Hilgard Ave, Los Angeles, CA 90095

Received  January 2010 Published  September 2010

This is an informal announcement of results to be described and proved in detail in [3]. We give various results on the structure of approximate subgroups in linear groups such as ${\rm{S}}{{\rm{L}}_n}(k)$. For example, generalizing a result of Helfgott (who handled the cases $n = 2$ and $3$), we show that any approximate subgroup of ${\rm{S}}{{\rm{L}}_n}({\mathbb{F}_q})$ which generates the group must be either very small or else nearly all of ${\rm{S}}{{\rm{L}}_n}({\mathbb{F}_q})$. The argument is valid for all Chevalley groups $G(\mathbb{F}_q)$. Extending work of Bourgain-Gamburd we also announce some applications to expanders, which will be proven in detail in [4].
Citation: Emmanuel Breuillard, Ben Green, Terence Tao. Linear approximate groups. Electronic Research Announcements, 2010, 17: 57-67. doi: 10.3934/era.2010.17.57
References:
[1]

L. Babai and A. Seress, On the diameter of permutation groups,, European J. Combin., 13 (1992).  doi: doi:10.1016/S0195-6698(05)80029-0.  Google Scholar

[2]

E. Breuillard and B. J. Green, Approximate groups II : The solvable linear case,, preprint, ().   Google Scholar

[3]

E. Breuillard, B. J. Green and T. C. Tao, Approximate subgroups of linear groups,, preprint. \arXiv{1005.1881}, ().   Google Scholar

[4]

E. Breuillard, B. J. Green and T. C. Tao, Expansion in simple groups of Lie type,, preprint., ().   Google Scholar

[5]

J. Bourgain and A. Gamburd, Uniform expansion bounds for Cayley graphs of $SL_2(F_p)$,, Ann. of Math. (2), 167 (2008), 625.  doi: doi:10.4007/annals.2008.167.625.  Google Scholar

[6]

J. Bourgain and A. Gamburd,, Expansion and random walks in $\SL_d(\Z/p^n\Z)$ I,, J. Eur. Math. Soc. (JEMS), 10 (2008), 987.   Google Scholar

[7]

J. Bourgain and A. Gamburd,, Expansion and random walks in $\SL_d(\Z/p^n\Z)$ II, With an appendix by Bourgain,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1057.   Google Scholar

[8]

J. Bourgain, A. Gamburd and P. Sarnak, Affine linear sieve, expanders, and sum-product,, Invent. Math, (2009).   Google Scholar

[9]

J. Bourgain, A. Glibichuk and S. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order,, J. London Math. Soc. (2), 73 (2006), 380.  doi: doi:10.1112/S0024610706022721.  Google Scholar

[10]

M.-C. Chang, Convolution of discrete measures on linear groups,, J. Funct. Anal., 253 (2007), 303.  doi: doi:10.1016/j.jfa.2007.03.008.  Google Scholar

[11]

M.-C. Chang, Product theorems in $\SL_2$ and $\SL_3$,, J. Math. Jussieu, 7 (2008).   Google Scholar

[12]

M.-C. Chang, On product sets in $\SL_2$ and $\SL_3$,, preprint., ().   Google Scholar

[13]

M.-C. Chang, Some consequences of the polynomial Freiman-Ruzsa conjecture,, C. R. Math. Acad. Sci. Paris, 347 (2009), 583.   Google Scholar

[14]

L. E. Dickson, "Linear groups with an exposition of Galois Field Theory,", Chapter XII, (2007).   Google Scholar

[15]

O. Dinai, Expansion properties of finite simple groups,, preprint. \arXiv{1001.5069}, ().   Google Scholar

[16]

A. Eskin, S. Mozes and H. Oh, On uniform exponential growth for linear groups,, Invent. Math., 160 (2005), 1.  doi: doi:10.1007/s00222-004-0378-z.  Google Scholar

[17]

A. Gamburd, S. Hoory, M. Shahshahani, A. Shalev and B. Virag, On the girth of random Cayley graphs,, Random Structures Algorithms, 35 (2009), 100.  doi: doi:10.1002/rsa.20266.  Google Scholar

[18]

N. Gill and H. Helfgott, Growth of small generating sets in $\SL_n(\Z/p\Z)$,, preprint. \arXiv{1002.1605}, ().   Google Scholar

[19]

W. T. Gowers, Quasirandom groups,, Combin. Probab. Comput., 17 (2008), 363.  doi: doi:10.1017/S0963548307008826.  Google Scholar

[20]

B. J. Green, Approximate groups and their applications: Work of Bourgain, Gamburd, Helfgott and Sarnak,, preprint. \arXiv{0911.3354}, ().   Google Scholar

[21]

M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Études Sci. Publ. Math. No., 53 (1981), 53.   Google Scholar

[22]

H. Helfgott, Growth and generation in $SL_2(Z/pZ)$,, Ann. of Math. (2), 167 (2008), 601.  doi: doi:10.4007/annals.2008.167.601.  Google Scholar

[23]

H. Helfgott, Growth in $\SL_3(\Z/p\Z)$,, preprint (2008). \arXiv{0807.2027}, (2008).   Google Scholar

[24]

J. E. Humphreys, "Linear Algebraic Groups,", Springer-Verlag GTM 21, (1975).   Google Scholar

[25]

E. Hrushovski, Stable group theory and approximate subgroups,, preprint (2009). \arXiv{0909.2190}, (2009).   Google Scholar

[26]

M. Larsen and R. Pink, Finite subgroups of algebraic groups,, preprint (1995)., (1995).   Google Scholar

[27]

C. Matthews, L. Vaserstein and B. Weisfeiler, Congruence properties of Zariski-dense subgroups,, Proc. London Math. Soc, 48 (1984), 514.  doi: doi:10.1112/plms/s3-48.3.514.  Google Scholar

[28]

M. V. Nori, On subgroups of $\GL_n(\F_p)$,, Invent. Math., 88 (1987), 257.  doi: doi:10.1007/BF01388909.  Google Scholar

[29]

L. Pyber and E. Szabó, Growth in finite simple groups of Lie type,, preprint (2010). \arXiv{1001.4556}, (2010).   Google Scholar

[30]

I. Z .Ruzsa, Generalized arithmetical progressions and sumsets,, Acta. Math. Hungar., 65 (1994), 379.  doi: doi:10.1007/BF01876039.  Google Scholar

[31]

T. C. Tao, Product set estimates in noncommutative groups,, Combinatorica, 28 (2008), 547.   Google Scholar

[32]

T. C. Tao, Freiman's theorem for solvable groups,, preprint., ().   Google Scholar

[33]

T. C. Tao and V. H. Vu, "Additive Combinatorics,", Cambridge University Press, (2006).  doi: doi:10.1017/CBO9780511755149.  Google Scholar

[34]

J. Tits, Free subgroups in linear groups,, Journal of Algebra, 20 (1972), 250.  doi: doi:10.1016/0021-8693(72)90058-0.  Google Scholar

[35]

P. Varjú, Expansion in $\SL_d(\mathcalO_K/I)$, $I$ squarefree,, preprint., ().   Google Scholar

[36]

V. H. Vu, M. Wood and P. Wood, Mapping incidences,, preprint., ().   Google Scholar

show all references

References:
[1]

L. Babai and A. Seress, On the diameter of permutation groups,, European J. Combin., 13 (1992).  doi: doi:10.1016/S0195-6698(05)80029-0.  Google Scholar

[2]

E. Breuillard and B. J. Green, Approximate groups II : The solvable linear case,, preprint, ().   Google Scholar

[3]

E. Breuillard, B. J. Green and T. C. Tao, Approximate subgroups of linear groups,, preprint. \arXiv{1005.1881}, ().   Google Scholar

[4]

E. Breuillard, B. J. Green and T. C. Tao, Expansion in simple groups of Lie type,, preprint., ().   Google Scholar

[5]

J. Bourgain and A. Gamburd, Uniform expansion bounds for Cayley graphs of $SL_2(F_p)$,, Ann. of Math. (2), 167 (2008), 625.  doi: doi:10.4007/annals.2008.167.625.  Google Scholar

[6]

J. Bourgain and A. Gamburd,, Expansion and random walks in $\SL_d(\Z/p^n\Z)$ I,, J. Eur. Math. Soc. (JEMS), 10 (2008), 987.   Google Scholar

[7]

J. Bourgain and A. Gamburd,, Expansion and random walks in $\SL_d(\Z/p^n\Z)$ II, With an appendix by Bourgain,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1057.   Google Scholar

[8]

J. Bourgain, A. Gamburd and P. Sarnak, Affine linear sieve, expanders, and sum-product,, Invent. Math, (2009).   Google Scholar

[9]

J. Bourgain, A. Glibichuk and S. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order,, J. London Math. Soc. (2), 73 (2006), 380.  doi: doi:10.1112/S0024610706022721.  Google Scholar

[10]

M.-C. Chang, Convolution of discrete measures on linear groups,, J. Funct. Anal., 253 (2007), 303.  doi: doi:10.1016/j.jfa.2007.03.008.  Google Scholar

[11]

M.-C. Chang, Product theorems in $\SL_2$ and $\SL_3$,, J. Math. Jussieu, 7 (2008).   Google Scholar

[12]

M.-C. Chang, On product sets in $\SL_2$ and $\SL_3$,, preprint., ().   Google Scholar

[13]

M.-C. Chang, Some consequences of the polynomial Freiman-Ruzsa conjecture,, C. R. Math. Acad. Sci. Paris, 347 (2009), 583.   Google Scholar

[14]

L. E. Dickson, "Linear groups with an exposition of Galois Field Theory,", Chapter XII, (2007).   Google Scholar

[15]

O. Dinai, Expansion properties of finite simple groups,, preprint. \arXiv{1001.5069}, ().   Google Scholar

[16]

A. Eskin, S. Mozes and H. Oh, On uniform exponential growth for linear groups,, Invent. Math., 160 (2005), 1.  doi: doi:10.1007/s00222-004-0378-z.  Google Scholar

[17]

A. Gamburd, S. Hoory, M. Shahshahani, A. Shalev and B. Virag, On the girth of random Cayley graphs,, Random Structures Algorithms, 35 (2009), 100.  doi: doi:10.1002/rsa.20266.  Google Scholar

[18]

N. Gill and H. Helfgott, Growth of small generating sets in $\SL_n(\Z/p\Z)$,, preprint. \arXiv{1002.1605}, ().   Google Scholar

[19]

W. T. Gowers, Quasirandom groups,, Combin. Probab. Comput., 17 (2008), 363.  doi: doi:10.1017/S0963548307008826.  Google Scholar

[20]

B. J. Green, Approximate groups and their applications: Work of Bourgain, Gamburd, Helfgott and Sarnak,, preprint. \arXiv{0911.3354}, ().   Google Scholar

[21]

M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Études Sci. Publ. Math. No., 53 (1981), 53.   Google Scholar

[22]

H. Helfgott, Growth and generation in $SL_2(Z/pZ)$,, Ann. of Math. (2), 167 (2008), 601.  doi: doi:10.4007/annals.2008.167.601.  Google Scholar

[23]

H. Helfgott, Growth in $\SL_3(\Z/p\Z)$,, preprint (2008). \arXiv{0807.2027}, (2008).   Google Scholar

[24]

J. E. Humphreys, "Linear Algebraic Groups,", Springer-Verlag GTM 21, (1975).   Google Scholar

[25]

E. Hrushovski, Stable group theory and approximate subgroups,, preprint (2009). \arXiv{0909.2190}, (2009).   Google Scholar

[26]

M. Larsen and R. Pink, Finite subgroups of algebraic groups,, preprint (1995)., (1995).   Google Scholar

[27]

C. Matthews, L. Vaserstein and B. Weisfeiler, Congruence properties of Zariski-dense subgroups,, Proc. London Math. Soc, 48 (1984), 514.  doi: doi:10.1112/plms/s3-48.3.514.  Google Scholar

[28]

M. V. Nori, On subgroups of $\GL_n(\F_p)$,, Invent. Math., 88 (1987), 257.  doi: doi:10.1007/BF01388909.  Google Scholar

[29]

L. Pyber and E. Szabó, Growth in finite simple groups of Lie type,, preprint (2010). \arXiv{1001.4556}, (2010).   Google Scholar

[30]

I. Z .Ruzsa, Generalized arithmetical progressions and sumsets,, Acta. Math. Hungar., 65 (1994), 379.  doi: doi:10.1007/BF01876039.  Google Scholar

[31]

T. C. Tao, Product set estimates in noncommutative groups,, Combinatorica, 28 (2008), 547.   Google Scholar

[32]

T. C. Tao, Freiman's theorem for solvable groups,, preprint., ().   Google Scholar

[33]

T. C. Tao and V. H. Vu, "Additive Combinatorics,", Cambridge University Press, (2006).  doi: doi:10.1017/CBO9780511755149.  Google Scholar

[34]

J. Tits, Free subgroups in linear groups,, Journal of Algebra, 20 (1972), 250.  doi: doi:10.1016/0021-8693(72)90058-0.  Google Scholar

[35]

P. Varjú, Expansion in $\SL_d(\mathcalO_K/I)$, $I$ squarefree,, preprint., ().   Google Scholar

[36]

V. H. Vu, M. Wood and P. Wood, Mapping incidences,, preprint., ().   Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]