Citation: |
[1] |
M. Brin, Y. Pesin, Partially hyperbolic dynamical systems, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212. |
[2] |
D. Damjanovic and A. Katok, Periodic cycle functionals and Cocycle rigidity for certain partially hyperbolic $\RR^k$ actions, Discr. Cont. Dyn.Syst., 13 (2005), 985-1005. |
[3] |
D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl Chamber flows on $SL(n,\RR)/\Gamma$, http://www.math.psu.edu/katok_a/papers.html. |
[4] |
D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. I. KAM method and $\ZZ^k$ actions on the torus, Annals of Math, 2010, to appear. |
[5] |
D. Damjanovic, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Modern Dyn., 1 (2007), 665-688. |
[6] |
Vinay V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math., 100 (1978), 303-386.doi: doi:10.2307/2373853. |
[7] |
A. J. Hahn and O. T. O'Meara, The classical groups and K-theory, Springer Verlag, Berlin, 1980, 55-58. |
[8] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds. Lecture Notes in Mathematics," 583, Springer Verlag, Berlin, 1977. |
[9] |
A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287-314. |
[10] |
G. A. Margulis, "Discrete Subgroups of Semisimple Lie Groups," Springer-Verlag, 1991. |
[11] |
G. A. Margulis and N. Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems, 21 (2001), 121-164.doi: doi:10.1017/S0143385701001109. |
[12] |
R. Steinberg, Generateurs, relations et revetements de groupes algebriques, Colloque de Bruxelles, 1962, 113-127. |