\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Longitudinal foliation rigidity and Lipschitz-continuous invariant forms for hyperbolic flows

Abstract Related Papers Cited by
  • In several contexts the defining invariant structures of a hyperbolic dynamical system are smooth only in systems of algebraic origin, and we prove new results of this smooth rigidity type for a class of flows.
        For a transversely symplectic uniformly quasiconformal $C^2$ Anosov flow on a compact Riemannian manifold we define the longitudinal KAM-cocycle and use it to prove a rigidity result: The joint stable/unstable subbundle is Zygmund-regular, and higher regularity implies vanishing of the KAM-cocycle, which in turn implies that the subbundle is Lipschitz-continuous and indeed that the flow is smoothly conjugate to an algebraic one. To establish the latter, we prove results for algebraic Anosov systems that imply smoothness and a special structure for any Lipschitz-continuous invariant 1-form.
        We obtain a pertinent geometric rigidity result: Uniformly quasiconformal magnetic flows are geodesic flows of hyperbolic metrics.
        Several features of the reasoning are interesting: The use of exterior calculus for Lipschitz-continuous forms, that the arguments for geodesic flows and infranilmanifoldautomorphisms are quite different, and the need for mixing as opposed to ergodicity in the latter case.
    Mathematics Subject Classification: Primary: 37D20, 37D40; Secondary: 53C24, 53D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Benoist, P. Foulon and F. Labourie, Flots d'Anosov à distributions de Liapounov différentiables. I., Hyperbolic behaviour of dynamical systems (Paris, 1990), Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 395-412.

    [2]

    Y. Benoist, P. Foulon and F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, Journal of the American Mathematical Society, 5 (1992), 33-74.doi: 10.2307/2152750.

    [3]

    N. Dairbekov and G. Paternain, Longitudinal KAM cocycles and action spectra of magnetic flows, Mathematics Research Letters, 12 (2005), 719-729.

    [4]

    S. DubrovskiyStokes Theorem for Lipschitz forms on a smooth manifold, arXiv:0805.4144v1

    [5]

    Y. Fang, On the rigidity of quasiconformal Anosov flows, Ergodic Theory and Dynamical Systems, 27 (2007), 1773-1802.doi: 10.1017/S0143385707000326.

    [6]

    R. Feres and A. Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergodic Theory and Dynamical Systems 9 (1989), 427-432.doi: 10.1017/S0143385700005071.

    [7]

    P. Foulon and B. Hasselblatt, Zygmund strong foliations, Israel Journal of Mathematics, 138 (2003), 157-188.doi: 10.1007/BF02783424.

    [8]

    Y. Fang, P. Foulon and B. Hasselblatt, Zygmund foliations in higher dimension, Journal of Modern Dynamics, 4 (2010), 549-569.

    [9]

    P. Foulon and B. Hasselblatt, Lipschitz continuous invariant forms for algebraic Anosov systems, Journal of Modern Dynamics, 4 (2010), 571-584.

    [10]

    V. M. Goldshtein, V. I. Kuzminov and I. A. Shvedov, Differential forms on a Lipschitz manifold, Sibirsk. Mat. Zh., 23 (1982), 16-30.

    [11]

    U. Hamenstädt, Invariant two-forms for geodesic flows, Mathematische Annalen, 101 (1995), 677-698.doi: 10.1007/BF01446654.

    [12]

    B. Hasselblatt, Hyperbolic dynamics, in "Handbook of Dynamical Systems," 1A, North Holland, (2002), 239-319.doi: 10.1016/S1874-575X(02)80005-4.

    [13]

    S. Hurder and Anatole Katok, Differentiability, rigidity, and Godbillon-Vey classes for Anosov flows, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 5-61.

    [14]

    A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995.

    [15]

    G. P. Paternain, The longitudinal KAM-cocycle of a magnetic flow, Math. Proc. Cambridge Philos. Soc., 139 (2005), 307-316.doi: 10.1017/S0305004105008613.

    [16]

    A. S. Zygmund, Trigonometric series, Cambridge University Press, 1959 (and 1968, 1979, 1988), revised version of Trigonometrical series, Monografje Matematyczne, Tom V, Warszawa-Lwow, 1935.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return