Citation: |
[1] |
Y. Benoist, P. Foulon and F. Labourie, Flots d'Anosov à distributions de Liapounov différentiables. I., Hyperbolic behaviour of dynamical systems (Paris, 1990), Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 395-412. |
[2] |
Y. Benoist, P. Foulon and F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, Journal of the American Mathematical Society, 5 (1992), 33-74.doi: 10.2307/2152750. |
[3] |
N. Dairbekov and G. Paternain, Longitudinal KAM cocycles and action spectra of magnetic flows, Mathematics Research Letters, 12 (2005), 719-729. |
[4] |
S. Dubrovskiy, Stokes Theorem for Lipschitz forms on a smooth manifold, arXiv:0805.4144v1 |
[5] |
Y. Fang, On the rigidity of quasiconformal Anosov flows, Ergodic Theory and Dynamical Systems, 27 (2007), 1773-1802.doi: 10.1017/S0143385707000326. |
[6] |
R. Feres and A. Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergodic Theory and Dynamical Systems 9 (1989), 427-432.doi: 10.1017/S0143385700005071. |
[7] |
P. Foulon and B. Hasselblatt, Zygmund strong foliations, Israel Journal of Mathematics, 138 (2003), 157-188.doi: 10.1007/BF02783424. |
[8] |
Y. Fang, P. Foulon and B. Hasselblatt, Zygmund foliations in higher dimension, Journal of Modern Dynamics, 4 (2010), 549-569. |
[9] |
P. Foulon and B. Hasselblatt, Lipschitz continuous invariant forms for algebraic Anosov systems, Journal of Modern Dynamics, 4 (2010), 571-584. |
[10] |
V. M. Goldshtein, V. I. Kuzminov and I. A. Shvedov, Differential forms on a Lipschitz manifold, Sibirsk. Mat. Zh., 23 (1982), 16-30. |
[11] |
U. Hamenstädt, Invariant two-forms for geodesic flows, Mathematische Annalen, 101 (1995), 677-698.doi: 10.1007/BF01446654. |
[12] |
B. Hasselblatt, Hyperbolic dynamics, in "Handbook of Dynamical Systems," 1A, North Holland, (2002), 239-319.doi: 10.1016/S1874-575X(02)80005-4. |
[13] |
S. Hurder and Anatole Katok, Differentiability, rigidity, and Godbillon-Vey classes for Anosov flows, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 5-61. |
[14] |
A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995. |
[15] |
G. P. Paternain, The longitudinal KAM-cocycle of a magnetic flow, Math. Proc. Cambridge Philos. Soc., 139 (2005), 307-316.doi: 10.1017/S0305004105008613. |
[16] |
A. S. Zygmund, Trigonometric series, Cambridge University Press, 1959 (and 1968, 1979, 1988), revised version of Trigonometrical series, Monografje Matematyczne, Tom V, Warszawa-Lwow, 1935. |