Advanced Search
Article Contents
Article Contents

Special functions created by Borel-Laplace transform of Hénon map

Abstract Related Papers Cited by
  • We present a novel class of functions that can describe the stable and unstable manifolds of the Hénon map. We propose an algorithm to construct these functions by using the Borel-Laplace transform. Neither linearization nor perturbation is applied in the construction, and the obtained functions are exact solutions of the Hénon map. We also show that it is possible to depict the chaotic attractor of the map by using one of these functions without explicitly using the properties of the attractor.
    Mathematics Subject Classification: Primary: 39A45; Secondary: 44A10.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50 (1976), 69-77.doi: doi:10.1007/BF01608556.


    E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130-141.doi: doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.


    V. Hakim and K. Mallick, Exponentially small splitting of separatrices, matching in the complex plane and Borel summation, Nonlinearity, 6 (1993), 57-70.doi: doi:10.1088/0951-7715/6/1/004.


    A. Tovbis, Asymptotics beyond all orders and analytic properties of inverse Laplace trnsforms of solutions, Commun. Math. Phys., 163 (1994), 245-255.doi: doi:10.1007/BF02102008.


    A. Tobvis, M. Tsuchiya and C. Jaffe, Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example, Chaos, 8 (1998), 665-681.doi: doi:10.1063/1.166349.


    K. Nakamura and M. Hamada, Asymptotic expansion of homoclinic structures in a symplectic mapping, J. Phys. A, 29 (1996), 7315-7327.doi: 10.1088/0305-4470/29/22/025.


    V. F. Lazutkin, I. G. Schachmannski and M. B. Tabanov, Splitting of separatrices for standard and semistandard mappings, Physica D, 40 (1989), 235-248.doi: doi:10.1016/0167-2789(89)90065-1.


    M. D. Kruskal and H. Segur, Asymptotics beyond all orders in a model of crystal growth, Stud. Appl. math., 85 (1991), 129-181.


    H. Segur, S. Tanveer and H. Levine (eds), "Asymptotics Beyond All Orders," (Plenum, New York), 1991.


    A. Voros, The return of quartic oscillator: The complex WKB method, Ann. Inst. H. Poincaré 39 (1983), 211-338.


    J. Écalle, "Les Fonctions Résurgence vol. 1," (French) [Resurgent functions. Vol. I] Les algèbres de fonctions résurgentes. [The algebras of resurgent functions] With an English foreword. Publications Mathématiques d'Orsay 81 [Mathematical Publications of Orsay 81], 5. Université de Paris-Sud, Département de Mathématique, Orsay, 1981.


    J. Écalle, "Les Fonctions Résurgence vol. 2," (French) [Resurgent functions. Vol. II] Les fonctions résurgentes appliquées à l'itération. [Resurgent functions applied to iteration] Publications Mathématiques d'Orsay 81 [Mathematical Publications of Orsay 81], 6. Université de Paris-Sud, Département de Mathématique, Orsay, 1981.


    J. Écalle, "Les Fonctions Résurgence vol. 3," (French) [Resurgent functions. Vol. III] L' équation du pont et la classification analytique des objects locaux. [The bridge equation and analytic classification of local objects] Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], 85-5. Université de Paris-Sud, Département de Math¨¦matiques, Orsay, 1985.


    B. Y. Sternin and V. E. Shatalov, "Borel-Laplace Transform and Asymptotic Theory," Introduction to Resurgent Analysis, CRC Press, Boca Raton, FL, 1996.


    V. Gelfreich and D. Sauzin, Borel summation and splitting of separatrices for the Hénon map, Ann. Inst. Fourier (Grenoble), 51 (2001), 513-67.


    S. Newhouse and T. Pignataro, On the estimation of topological entropy, J. Stat. Phys., 72 (1993), 1331-1351.

  • 加载中

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint