January  2011, 18: 1-11. doi: 10.3934/era.2011.18.1

Special functions created by Borel-Laplace transform of Hénon map

1. 

Department of Physics, Graduate school of Science and Technology, Ehime University, Bunkyocho 2-5, Matsuyama 790-8577, Japan

2. 

Department of Mathematics, Graduate school of Science and Technology, Ehime University, Bunkyocho 2-5, Matsuyama 790-8577, Japan

Received  June 2010 Published  January 2011

We present a novel class of functions that can describe the stable and unstable manifolds of the Hénon map. We propose an algorithm to construct these functions by using the Borel-Laplace transform. Neither linearization nor perturbation is applied in the construction, and the obtained functions are exact solutions of the Hénon map. We also show that it is possible to depict the chaotic attractor of the map by using one of these functions without explicitly using the properties of the attractor.
Citation: Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1
References:
[1]

M. Hénon, A two-dimensional mapping with a strange attractor,, Commun. Math. Phys., 50 (1976), 69. doi: doi:10.1007/BF01608556. Google Scholar

[2]

E. N. Lorenz, Deterministic nonperiodic flow,, J. Atmos. Sci., 20 (1963), 130. doi: doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Google Scholar

[3]

V. Hakim and K. Mallick, Exponentially small splitting of separatrices, matching in the complex plane and Borel summation,, Nonlinearity, 6 (1993), 57. doi: doi:10.1088/0951-7715/6/1/004. Google Scholar

[4]

A. Tovbis, Asymptotics beyond all orders and analytic properties of inverse Laplace trnsforms of solutions,, Commun. Math. Phys., 163 (1994), 245. doi: doi:10.1007/BF02102008. Google Scholar

[5]

A. Tobvis, M. Tsuchiya and C. Jaffe, Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example,, Chaos, 8 (1998), 665. doi: doi:10.1063/1.166349. Google Scholar

[6]

K. Nakamura and M. Hamada, Asymptotic expansion of homoclinic structures in a symplectic mapping,, J. Phys. A, 29 (1996), 7315. doi: 10.1088/0305-4470/29/22/025. Google Scholar

[7]

V. F. Lazutkin, I. G. Schachmannski and M. B. Tabanov, Splitting of separatrices for standard and semistandard mappings,, Physica D, 40 (1989), 235. doi: doi:10.1016/0167-2789(89)90065-1. Google Scholar

[8]

M. D. Kruskal and H. Segur, Asymptotics beyond all orders in a model of crystal growth,, Stud. Appl. math., 85 (1991), 129. Google Scholar

[9]

H. Segur, S. Tanveer and H. Levine (eds), "Asymptotics Beyond All Orders,", (Plenum, (1991). Google Scholar

[10]

A. Voros, The return of quartic oscillator: The complex WKB method,, Ann. Inst. H. Poincaré {\bf 39} (1983), 39 (1983), 211. Google Scholar

[11]

J. Écalle, "Les Fonctions Résurgence vol. 1," (French), [Resurgent functions. Vol. I] Les algèbres de fonctions résurgentes. [The algebras of resurgent functions] With an English foreword. Publications Mathématiques d'Orsay 81 [Mathematical Publications of Orsay 81], (1981). Google Scholar

[12]

J. Écalle, "Les Fonctions Résurgence vol. 2,", (French) [Resurgent functions. Vol. II] Les fonctions résurgentes appliquées à l'itération. [Resurgent functions applied to iteration] Publications Mathématiques d'Orsay 81 [Mathematical Publications of Orsay 81], (1981). Google Scholar

[13]

J. Écalle, "Les Fonctions Résurgence vol. 3," (French), [Resurgent functions. Vol. III] L' équation du pont et la classification analytique des objects locaux. [The bridge equation and analytic classification of local objects] Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], (1985), 85. Google Scholar

[14]

B. Y. Sternin and V. E. Shatalov, "Borel-Laplace Transform and Asymptotic Theory,", Introduction to Resurgent Analysis, (1996). Google Scholar

[15]

V. Gelfreich and D. Sauzin, Borel summation and splitting of separatrices for the Hénon map,, Ann. Inst. Fourier (Grenoble), 51 (2001), 513. Google Scholar

[16]

S. Newhouse and T. Pignataro, On the estimation of topological entropy,, J. Stat. Phys., 72 (1993), 1331. Google Scholar

show all references

References:
[1]

M. Hénon, A two-dimensional mapping with a strange attractor,, Commun. Math. Phys., 50 (1976), 69. doi: doi:10.1007/BF01608556. Google Scholar

[2]

E. N. Lorenz, Deterministic nonperiodic flow,, J. Atmos. Sci., 20 (1963), 130. doi: doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Google Scholar

[3]

V. Hakim and K. Mallick, Exponentially small splitting of separatrices, matching in the complex plane and Borel summation,, Nonlinearity, 6 (1993), 57. doi: doi:10.1088/0951-7715/6/1/004. Google Scholar

[4]

A. Tovbis, Asymptotics beyond all orders and analytic properties of inverse Laplace trnsforms of solutions,, Commun. Math. Phys., 163 (1994), 245. doi: doi:10.1007/BF02102008. Google Scholar

[5]

A. Tobvis, M. Tsuchiya and C. Jaffe, Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example,, Chaos, 8 (1998), 665. doi: doi:10.1063/1.166349. Google Scholar

[6]

K. Nakamura and M. Hamada, Asymptotic expansion of homoclinic structures in a symplectic mapping,, J. Phys. A, 29 (1996), 7315. doi: 10.1088/0305-4470/29/22/025. Google Scholar

[7]

V. F. Lazutkin, I. G. Schachmannski and M. B. Tabanov, Splitting of separatrices for standard and semistandard mappings,, Physica D, 40 (1989), 235. doi: doi:10.1016/0167-2789(89)90065-1. Google Scholar

[8]

M. D. Kruskal and H. Segur, Asymptotics beyond all orders in a model of crystal growth,, Stud. Appl. math., 85 (1991), 129. Google Scholar

[9]

H. Segur, S. Tanveer and H. Levine (eds), "Asymptotics Beyond All Orders,", (Plenum, (1991). Google Scholar

[10]

A. Voros, The return of quartic oscillator: The complex WKB method,, Ann. Inst. H. Poincaré {\bf 39} (1983), 39 (1983), 211. Google Scholar

[11]

J. Écalle, "Les Fonctions Résurgence vol. 1," (French), [Resurgent functions. Vol. I] Les algèbres de fonctions résurgentes. [The algebras of resurgent functions] With an English foreword. Publications Mathématiques d'Orsay 81 [Mathematical Publications of Orsay 81], (1981). Google Scholar

[12]

J. Écalle, "Les Fonctions Résurgence vol. 2,", (French) [Resurgent functions. Vol. II] Les fonctions résurgentes appliquées à l'itération. [Resurgent functions applied to iteration] Publications Mathématiques d'Orsay 81 [Mathematical Publications of Orsay 81], (1981). Google Scholar

[13]

J. Écalle, "Les Fonctions Résurgence vol. 3," (French), [Resurgent functions. Vol. III] L' équation du pont et la classification analytique des objects locaux. [The bridge equation and analytic classification of local objects] Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], (1985), 85. Google Scholar

[14]

B. Y. Sternin and V. E. Shatalov, "Borel-Laplace Transform and Asymptotic Theory,", Introduction to Resurgent Analysis, (1996). Google Scholar

[15]

V. Gelfreich and D. Sauzin, Borel summation and splitting of separatrices for the Hénon map,, Ann. Inst. Fourier (Grenoble), 51 (2001), 513. Google Scholar

[16]

S. Newhouse and T. Pignataro, On the estimation of topological entropy,, J. Stat. Phys., 72 (1993), 1331. Google Scholar

[1]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[2]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[3]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[4]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[5]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[6]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[7]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[8]

Gerhard Keller, Carlangelo Liverani. Coupled map lattices without cluster expansion. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 325-335. doi: 10.3934/dcds.2004.11.325

[9]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[10]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[11]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[12]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[13]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 755-768. doi: 10.3934/dcdss.2020042

[14]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

[15]

Wacław Marzantowicz, Piotr Maciej Przygodzki. Finding periodic points of a map by use of a k-adic expansion. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 495-514. doi: 10.3934/dcds.1999.5.495

[16]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[17]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[18]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[19]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[20]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]