-
Previous Article
Semisimplicity of the quantum cohomology for smooth Fano toric varieties associated with facet symmetric polytopes
- ERA-MS Home
- This Volume
-
Next Article
Order isomorphisms in windows
Equivariant sheaves on some spherical varieties
1. | Department of Mathematics, University of Southern California, Los Angeles, CA, 90089, United States |
2. | Department of Mathematics, Hood College, Frederick, MD 21701, United States |
References:
[1] |
A. Asok and J. Parson, Equivariant sheaves on spherical varieties, in preparation. |
[2] |
A. Asok, Equivariant vector bundles on certain affine $G$-varieties, Pure Appl. Math. Q., 2 (2006), 1085-1102. |
[3] |
M. Demazure and P. Gabriel, "Groupes Algébriques. Tome I: Géométrie Algébrique, Généralités, Groupes Commutatifs," Avec un appendice Corps de classes local par Michiel Hazewinkel, Masson & Cie, Éditeur, Paris, North-Holland Publishing Co., Amsterdam, 1970. |
[4] |
J. Giraud, Méthode de la descente, Bull. Soc. Math. France Mém., 2 (1964), viii+150. |
[5] |
S. Kato, Equivariant vector bundles on group completions, J. Reine Angew. Math., 581 (2005), 71-116.
doi: 10.1515/crll.2005.2005.581.71. |
[6] |
A. A. Klyachko, Equivariant bundles over toric varieties, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 1001-1039, 1135, translation in Math. USSR-Izv., 35 (1990), 337-375.
doi: 10.1070/IM1990v035n02ABEH000707. |
[7] |
F. Knop, "The Luna-Vust Theory of Spherical Embeddings," Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225-249, Manoj Prakashan, Madras, 1991. |
[8] |
F. Knop, The asymptotic behavior of invariant collective motion, Invent. Math., 116 (1994), 309-328.
doi: 10.1007/BF01231563. |
[9] |
Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie 1960-61 [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 \#7129)]. |
[10] |
D. Timashev, "Homogeneous Spaces and Equivariant Embeddings," Encyclopaedia of Mathematical Sciences, 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011. |
show all references
References:
[1] |
A. Asok and J. Parson, Equivariant sheaves on spherical varieties, in preparation. |
[2] |
A. Asok, Equivariant vector bundles on certain affine $G$-varieties, Pure Appl. Math. Q., 2 (2006), 1085-1102. |
[3] |
M. Demazure and P. Gabriel, "Groupes Algébriques. Tome I: Géométrie Algébrique, Généralités, Groupes Commutatifs," Avec un appendice Corps de classes local par Michiel Hazewinkel, Masson & Cie, Éditeur, Paris, North-Holland Publishing Co., Amsterdam, 1970. |
[4] |
J. Giraud, Méthode de la descente, Bull. Soc. Math. France Mém., 2 (1964), viii+150. |
[5] |
S. Kato, Equivariant vector bundles on group completions, J. Reine Angew. Math., 581 (2005), 71-116.
doi: 10.1515/crll.2005.2005.581.71. |
[6] |
A. A. Klyachko, Equivariant bundles over toric varieties, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 1001-1039, 1135, translation in Math. USSR-Izv., 35 (1990), 337-375.
doi: 10.1070/IM1990v035n02ABEH000707. |
[7] |
F. Knop, "The Luna-Vust Theory of Spherical Embeddings," Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225-249, Manoj Prakashan, Madras, 1991. |
[8] |
F. Knop, The asymptotic behavior of invariant collective motion, Invent. Math., 116 (1994), 309-328.
doi: 10.1007/BF01231563. |
[9] |
Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie 1960-61 [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 \#7129)]. |
[10] |
D. Timashev, "Homogeneous Spaces and Equivariant Embeddings," Encyclopaedia of Mathematical Sciences, 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011. |
[1] |
Eckhard Meinrenken. Quotients of double vector bundles and multigraded bundles. Journal of Geometric Mechanics, 2022, 14 (2) : 307-329. doi: 10.3934/jgm.2021027 |
[2] |
J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002 |
[3] |
V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511 |
[4] |
Lawrence Ein, Wenbo Niu, Jinhyung Park. On blowup of secant varieties of curves. Electronic Research Archive, 2021, 29 (6) : 3649-3654. doi: 10.3934/era.2021055 |
[5] |
Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985 |
[6] |
Anton Izosimov. Pentagrams, inscribed polygons, and Prym varieties. Electronic Research Announcements, 2016, 23: 25-40. doi: 10.3934/era.2016.23.004 |
[7] |
G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10. |
[8] |
A. Giambruno and M. Zaicev. Minimal varieties of algebras of exponential growth. Electronic Research Announcements, 2000, 6: 40-44. |
[9] |
Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109 |
[10] |
Ghislain Fourier, Gabriele Nebe. Degenerate flag varieties in network coding. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021027 |
[11] |
Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069 |
[12] |
Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004 |
[13] |
V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44. |
[14] |
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131 |
[15] |
Susanna V. Haziot. On the spherical geopotential approximation for Saturn. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2327-2336. doi: 10.3934/cpaa.2022035 |
[16] |
Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3341-3367. doi: 10.3934/dcdsb.2017140 |
[17] |
Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561 |
[18] |
Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005 |
[19] |
Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001 |
[20] |
Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]