2011, 18: 119-130. doi: 10.3934/era.2011.18.119

Equivariant sheaves on some spherical varieties

1. 

Department of Mathematics, University of Southern California, Los Angeles, CA, 90089, United States

2. 

Department of Mathematics, Hood College, Frederick, MD 21701, United States

Received  October 2010 Revised  July 2011 Published  September 2011

We provide a concrete description of the category of equivariant vector bundles on a class of spherical $\G$-varieties.
Citation: Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119
References:
[1]

A. Asok and J. Parson, Equivariant sheaves on spherical varieties,, in preparation., ().   Google Scholar

[2]

A. Asok, Equivariant vector bundles on certain affine $G$-varieties,, Pure Appl. Math. Q., 2 (2006), 1085.   Google Scholar

[3]

M. Demazure and P. Gabriel, "Groupes Algébriques. Tome I: Géométrie Algébrique, Généralités, Groupes Commutatifs,", Avec un appendice Corps de classes local par Michiel Hazewinkel, (1970).   Google Scholar

[4]

J. Giraud, Méthode de la descente,, Bull. Soc. Math. France Mém., 2 (1964).   Google Scholar

[5]

S. Kato, Equivariant vector bundles on group completions,, J. Reine Angew. Math., 581 (2005), 71.  doi: 10.1515/crll.2005.2005.581.71.  Google Scholar

[6]

A. A. Klyachko, Equivariant bundles over toric varieties,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 1001.  doi: 10.1070/IM1990v035n02ABEH000707.  Google Scholar

[7]

F. Knop, "The Luna-Vust Theory of Spherical Embeddings,", Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, (1989), 225.   Google Scholar

[8]

F. Knop, The asymptotic behavior of invariant collective motion,, Invent. Math., 116 (1994), 309.  doi: 10.1007/BF01231563.  Google Scholar

[9]

Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003,, Séminaire de géométrie algébrique du Bois Marie 1960-61 [Algebraic Geometry Seminar of Bois Marie 1960-61], 224 (1971), 1960.   Google Scholar

[10]

D. Timashev, "Homogeneous Spaces and Equivariant Embeddings," Encyclopaedia of Mathematical Sciences, 138, Invariant Theory and Algebraic Transformation Groups, 8,, Springer, (2011).   Google Scholar

show all references

References:
[1]

A. Asok and J. Parson, Equivariant sheaves on spherical varieties,, in preparation., ().   Google Scholar

[2]

A. Asok, Equivariant vector bundles on certain affine $G$-varieties,, Pure Appl. Math. Q., 2 (2006), 1085.   Google Scholar

[3]

M. Demazure and P. Gabriel, "Groupes Algébriques. Tome I: Géométrie Algébrique, Généralités, Groupes Commutatifs,", Avec un appendice Corps de classes local par Michiel Hazewinkel, (1970).   Google Scholar

[4]

J. Giraud, Méthode de la descente,, Bull. Soc. Math. France Mém., 2 (1964).   Google Scholar

[5]

S. Kato, Equivariant vector bundles on group completions,, J. Reine Angew. Math., 581 (2005), 71.  doi: 10.1515/crll.2005.2005.581.71.  Google Scholar

[6]

A. A. Klyachko, Equivariant bundles over toric varieties,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 1001.  doi: 10.1070/IM1990v035n02ABEH000707.  Google Scholar

[7]

F. Knop, "The Luna-Vust Theory of Spherical Embeddings,", Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, (1989), 225.   Google Scholar

[8]

F. Knop, The asymptotic behavior of invariant collective motion,, Invent. Math., 116 (1994), 309.  doi: 10.1007/BF01231563.  Google Scholar

[9]

Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003,, Séminaire de géométrie algébrique du Bois Marie 1960-61 [Algebraic Geometry Seminar of Bois Marie 1960-61], 224 (1971), 1960.   Google Scholar

[10]

D. Timashev, "Homogeneous Spaces and Equivariant Embeddings," Encyclopaedia of Mathematical Sciences, 138, Invariant Theory and Algebraic Transformation Groups, 8,, Springer, (2011).   Google Scholar

[1]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[2]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[3]

Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985

[4]

Anton Izosimov. Pentagrams, inscribed polygons, and Prym varieties. Electronic Research Announcements, 2016, 23: 25-40. doi: 10.3934/era.2016.23.004

[5]

G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10.

[6]

A. Giambruno and M. Zaicev. Minimal varieties of algebras of exponential growth. Electronic Research Announcements, 2000, 6: 40-44.

[7]

Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109

[8]

Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069

[9]

Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004

[10]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

[11]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[12]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[13]

Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1

[14]

Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3341-3367. doi: 10.3934/dcdsb.2017140

[15]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

[16]

Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005

[17]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[18]

Herbert Gajewski, Jens A. Griepentrog. A descent method for the free energy of multicomponent systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 505-528. doi: 10.3934/dcds.2006.15.505

[19]

Joseph Hundley, Eitan Sayag. Descent construction for GSpin groups: Main results and applications. Electronic Research Announcements, 2009, 16: 30-36. doi: 10.3934/era.2009.16.30

[20]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]