2011, 18: 31-49. doi: 10.3934/era.2011.18.31

Jordan elements and Left-Center of a Free Leibniz algebra

1. 

Kazakh-British University, Almaty, Kazakhstan

Received  February 2011 Revised  April 2011 Published  July 2011

An element of a free Leibniz algebra is called Jordan if it belongs to a free Leibniz-Jordan subalgebra. Elements of the Jordan commutant of a free Leibniz algebra are called weak Jordan. We prove that an element of a free Leibniz algebra over a field of characteristic 0 is weak Jordan if and only if it is left-central. We show that free Leibniz algebra is an extension of a free Lie algebra by left-center. We find the dimensions of the homogeneous components of the Jordan commutant and the base of its multilinear part. We find criterion for an element of free Leibniz algebra to be Jordan.
Citation: A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31
References:
[1]

A. S. Dzhumadil'daev, $q$-Leibniz algebras, Serdica Math., 34 (2008), 415-440.  Google Scholar

[2]

N. Jacobson, "Structure and Representations of Jordan Algebras," AMS Colloq. Publ., 39, Mathematical Society, Providence, RI, 1968.  Google Scholar

[3]

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Liebniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. doi: 10.1007/BF01445099.  Google Scholar

[4]

J.-L. Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77 (1995), 189-196.  Google Scholar

[5]

C. Reutenauer, "Free Lie Algebras," London Mathematical Society Monographs, New Series, 7, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.  Google Scholar

show all references

References:
[1]

A. S. Dzhumadil'daev, $q$-Leibniz algebras, Serdica Math., 34 (2008), 415-440.  Google Scholar

[2]

N. Jacobson, "Structure and Representations of Jordan Algebras," AMS Colloq. Publ., 39, Mathematical Society, Providence, RI, 1968.  Google Scholar

[3]

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Liebniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. doi: 10.1007/BF01445099.  Google Scholar

[4]

J.-L. Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77 (1995), 189-196.  Google Scholar

[5]

C. Reutenauer, "Free Lie Algebras," London Mathematical Society Monographs, New Series, 7, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.  Google Scholar

[1]

Randall Dougherty and Thomas Jech. Left-distributive embedding algebras. Electronic Research Announcements, 1997, 3: 28-37.

[2]

Golamreza Zamani Eskandani, Hamid Vaezi. Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1469-1477. doi: 10.3934/dcds.2011.31.1469

[3]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[4]

Yu-Lin Chang, Chin-Yu Yang. Some useful inequalities via trace function method in Euclidean Jordan algebras. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 39-48. doi: 10.3934/naco.2014.4.39

[5]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[6]

Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71

[7]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[8]

Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051

[9]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[10]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[11]

Víctor Ayala, Adriano Da Silva, Philippe Jouan. Jordan decomposition and the recurrent set of flows of automorphisms. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1543-1559. doi: 10.3934/dcds.2020330

[12]

A. A. Kirillov. Family algebras. Electronic Research Announcements, 2000, 6: 7-20.

[13]

Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure & Applied Analysis, 2009, 8 (1) : 95-121. doi: 10.3934/cpaa.2009.8.95

[14]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[15]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[16]

T. J. Newman. Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005, 2 (3) : 613-624. doi: 10.3934/mbe.2005.2.613

[17]

Steffen Konig and Changchang Xi. Cellular algebras and quasi-hereditary algebras: a comparison. Electronic Research Announcements, 1999, 5: 71-75.

[18]

Mary J. Bravo, Marco Caponigro, Emily Leibowitz, Benedetto Piccoli. Keep right or left? Towards a cognitive-mathematical model for pedestrians. Networks & Heterogeneous Media, 2015, 10 (3) : 559-578. doi: 10.3934/nhm.2015.10.559

[19]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[20]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]