January  2011, 18: 50-53. doi: 10.3934/era.2011.18.50

Spectrum of some triangulated categories

1. 

Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani, Chennai 600 113, Tamil Nadu, India

2. 

Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain

Received  March 2011 Published  July 2011

In this note we announce the computation of the triangular spectrum (as defined by P. Balmer) of two classes of tensor triangulated categories which are quite common in algebraic geometry. One of them is the derived category of $G$-equivariant sheaves on a smooth quasi projective scheme $X$ for a finite group $G$ which acts on $X$. The other class is the derived category of split super-schemes.
Citation: Umesh V. Dubey, Vivek M. Mallick. Spectrum of some triangulated categories. Electronic Research Announcements, 2011, 18: 50-53. doi: 10.3934/era.2011.18.50
References:
[1]

Paul Balmer, Presheaves of triangulated categories and reconstruction of schemes,, Math. Ann., 324 (2002), 557. doi: 10.1007/s00208-002-0353-1. Google Scholar

[2]

Paul Balmer, The spectrum of prime ideals in tensor triangulated categories,, J. Reine Angew. Math., 588 (2005), 149. doi: 10.1515/crll.2005.2005.588.149. Google Scholar

[3]

Alexei Bondal and Dmitri Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences,, Compositio Math., 125 (2001), 327. doi: 10.1023/A:1002470302976. Google Scholar

[4]

Aslak Bakke Buan, Henning Krause and Oyvind Solberg, Support varieties: An ideal approach,, Homology, 9 (2007), 45. Google Scholar

[5]

Pierre Gabriel, Des catégories abéinnes,, Bull. Soc. Math. France, 90 (1962), 323. Google Scholar

[6]

Yu. I. Manin, "New Dimensions in Geometry,", Workshop Bonn 1984 (Bonn, 1111 (1985), 59. Google Scholar

[7]

Yuri I. Manin, "Gauge field theory and complex geometry,", Grundlehren der Mathematischen Wissenschaften, 289 (1988). Google Scholar

[8]

Shigeru Mukai, Duality between $D(X)$ and $D(\hatX)$ with its application to Picard sheaves,, Nagoya Math. J., 81 (1981), 153. Google Scholar

[9]

David Mumford, "Abelian varieties,", with appendices by C. P. Ramanujam and Yuri Manin, 5 (1974). Google Scholar

[10]

Amnon Neeman, The Grothendick duality theorem via Bousfield's techniques and Brown representability,, J. Amer. Math. Soc., 9 (1996), 205. doi: 10.1090/S0894-0347-96-00174-9. Google Scholar

[11]

Alexander L. Rosenberg, Noncommutative schemes,, Compositio Math., 112 (1998), 93. doi: 10.1023/A:1000479824211. Google Scholar

[12]

R. W. Thomason, The classification of triangulated subcategories,, Compositio Math., 105 (1997), 1. doi: 10.1023/A:1017932514274. Google Scholar

show all references

References:
[1]

Paul Balmer, Presheaves of triangulated categories and reconstruction of schemes,, Math. Ann., 324 (2002), 557. doi: 10.1007/s00208-002-0353-1. Google Scholar

[2]

Paul Balmer, The spectrum of prime ideals in tensor triangulated categories,, J. Reine Angew. Math., 588 (2005), 149. doi: 10.1515/crll.2005.2005.588.149. Google Scholar

[3]

Alexei Bondal and Dmitri Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences,, Compositio Math., 125 (2001), 327. doi: 10.1023/A:1002470302976. Google Scholar

[4]

Aslak Bakke Buan, Henning Krause and Oyvind Solberg, Support varieties: An ideal approach,, Homology, 9 (2007), 45. Google Scholar

[5]

Pierre Gabriel, Des catégories abéinnes,, Bull. Soc. Math. France, 90 (1962), 323. Google Scholar

[6]

Yu. I. Manin, "New Dimensions in Geometry,", Workshop Bonn 1984 (Bonn, 1111 (1985), 59. Google Scholar

[7]

Yuri I. Manin, "Gauge field theory and complex geometry,", Grundlehren der Mathematischen Wissenschaften, 289 (1988). Google Scholar

[8]

Shigeru Mukai, Duality between $D(X)$ and $D(\hatX)$ with its application to Picard sheaves,, Nagoya Math. J., 81 (1981), 153. Google Scholar

[9]

David Mumford, "Abelian varieties,", with appendices by C. P. Ramanujam and Yuri Manin, 5 (1974). Google Scholar

[10]

Amnon Neeman, The Grothendick duality theorem via Bousfield's techniques and Brown representability,, J. Amer. Math. Soc., 9 (1996), 205. doi: 10.1090/S0894-0347-96-00174-9. Google Scholar

[11]

Alexander L. Rosenberg, Noncommutative schemes,, Compositio Math., 112 (1998), 93. doi: 10.1023/A:1000479824211. Google Scholar

[12]

R. W. Thomason, The classification of triangulated subcategories,, Compositio Math., 105 (1997), 1. doi: 10.1023/A:1017932514274. Google Scholar

[1]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[2]

Xavier Brusset, Per J. Agrell. Intrinsic impediments to category captainship collaboration. Journal of Industrial & Management Optimization, 2017, 13 (1) : 113-133. doi: 10.3934/jimo.2016007

[3]

Alan Weinstein. A note on the Wehrheim-Woodward category. Journal of Geometric Mechanics, 2011, 3 (4) : 507-515. doi: 10.3934/jgm.2011.3.507

[4]

Jianguo Dai, Wenxue Huang, Yuanyi Pan. A category-based probabilistic approach to feature selection. Big Data & Information Analytics, 2017, 2 (5) : 1-8. doi: 10.3934/bdia.2017020

[5]

Lev Buhovski. The gap between near commutativity and almost commutativity in symplectic category. Electronic Research Announcements, 2013, 20: 71-76. doi: 10.3934/era.2013.20.71

[6]

Patrik Nystedt, Johan Öinert. Simple skew category algebras associated with minimal partially defined dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4157-4171. doi: 10.3934/dcds.2013.33.4157

[7]

In-Soo Baek, Lars Olsen. Baire category and extremely non-normal points of invariant sets of IFS's. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 935-943. doi: 10.3934/dcds.2010.27.935

[8]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[9]

Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105

[10]

C. T. Cremins, G. Infante. A semilinear $A$-spectrum. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 235-242. doi: 10.3934/dcdss.2008.1.235

[11]

Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71

[12]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[13]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[14]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[15]

Filippo Morabito. Bounded and unbounded capillary surfaces derived from the catenoid. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 589-614. doi: 10.3934/dcds.2018026

[16]

Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1

[17]

Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339

[18]

Natalija Sergejeva. On the unusual Fucik spectrum. Conference Publications, 2007, 2007 (Special) : 920-926. doi: 10.3934/proc.2007.2007.920

[19]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[20]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]