January  2011, 18: 54-60. doi: 10.3934/era.2011.18.54

Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$

1. 

Mathematisches Seminar, Universität Kiel, 24098 Kiel, Germany

2. 

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Received  February 2011 Revised  April 2011 Published  July 2011

Let $T:C^1(RR)\to C(RR)$ be an operator satisfying the derivation equation

$T(f\cdot g)=(Tf)\cdot g + f \cdot (Tg),$

where $f,g\in C^1(RR)$, and some weak additional assumption. Then $T$ must be of the form

$(Tf)(x) = c(x) \, f'(x) + d(x) \, f(x) \, \ln |f(x)|$

for $f \in C^1(RR), x \in RR$, where $c, d \in C(RR)$ are suitable continuous functions, with the convention $0 \ln 0 = 0$. If the domain of $T$ is assumed to be $C(RR)$, then $c=0$ and $T$ is essentially given by the entropy function $f \ln |f|$. We can also determine the solutions of the generalized derivation equation

$T(f\cdot g)=(Tf)\cdot (A_1g) + (A_2f) \cdot (Tg), $

where $f,g\in C^1(RR)$, for operators $T:C^1(RR)\to C(RR)$ and $A_1, A_2:C(RR)\to C(RR)$ fulfilling some weak additional properties.

Citation: Hermann Köenig, Vitali Milman. Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$. Electronic Research Announcements, 2011, 18: 54-60. doi: 10.3934/era.2011.18.54
References:
[1]

J. Aczél, "Lectures on Functional Equations and their Applications,", Mathematics in Science and Engineering, 19 (1966). Google Scholar

[2]

S. Artstein-Avidan, H. König and V. Milman, The chain rule as a functional equation,, Journ. Funct. Anal., 259 (2010), 2999. doi: 10.1016/j.jfa.2010.07.002. Google Scholar

[3]

H. König and V. Milman, Characterizing the derivative and the entropy function by the Leibniz rule,, preprint., (). Google Scholar

show all references

References:
[1]

J. Aczél, "Lectures on Functional Equations and their Applications,", Mathematics in Science and Engineering, 19 (1966). Google Scholar

[2]

S. Artstein-Avidan, H. König and V. Milman, The chain rule as a functional equation,, Journ. Funct. Anal., 259 (2010), 2999. doi: 10.1016/j.jfa.2010.07.002. Google Scholar

[3]

H. König and V. Milman, Characterizing the derivative and the entropy function by the Leibniz rule,, preprint., (). Google Scholar

[1]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[2]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[3]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[4]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[5]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[6]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[7]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[8]

Boris Paneah. On the over determinedness of some functional equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 497-505. doi: 10.3934/dcds.2004.10.497

[9]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[10]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[11]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[12]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[13]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[14]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[15]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[16]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[17]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

[18]

Stefano Scrobogna. Derivation of limit equations for a singular perturbation of a 3D periodic Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 5979-6034. doi: 10.3934/dcds.2017259

[19]

Patrick Ballard, Bernadette Miara. Formal asymptotic analysis of elastic beams and thin-walled beams: A derivation of the Vlassov equations and their generalization to the anisotropic heterogeneous case. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1547-1588. doi: 10.3934/dcdss.2019107

[20]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]