2011, 18: 69-90. doi: 10.3934/era.2011.18.69

An inverse theorem for the Gowers $U^{s+1}[N]$-norm

1. 

Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA

2. 

Department of Mathematics, UCLA, 405 Hilgard Ave, Los Angeles, CA 90095

3. 

Department of Mathematics, Technion - Israel Institute of Technology, Haifa, 32000, Israel

Received  March 2011 Revised  May 2011 Published  July 2011

This is an announcement of the proof of the inverse conjecture for the Gowers $U^{s+1}[N]$-norm for all $s \geq 3$; this is new for $s \geq 4$, the cases $s = 1,2,3$ having been previously established. More precisely we outline a proof that if $f : [N] \rightarrow [-1,1]$ is a function with ||$f$|| $U^{s+1}[N] \geq \delta$ then there is a bounded-complexity $s$-step nilsequence $F(g(n)\Gamma)$ which correlates with $f$, where the bounds on the complexity and correlation depend only on $s$ and $\delta$. From previous results, this conjecture implies the Hardy-Littlewood prime tuples conjecture for any linear system of finite complexity. In particular, one obtains an asymptotic formula for the number of $k$-term arithmetic progressions $p_1 < p_2 < ... < p_k \leq N$ of primes, for every $k \geq 3$.
Citation: Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69
References:
[1]

N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn and D. Ron, Testing low-degree polynomials over GF(2),, Approximation, 51 (2005), 188.  doi: 10.1109/TIT.2005.856958.  Google Scholar

[2]

A. Balog and E. Szemerédi, A statistical theorem of set addition,, Combinatorica, 14 (1994), 263.  doi: 10.1007/BF01212974.  Google Scholar

[3]

V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences,, (with an appendix by I. Ruzsa), 160 (2005), 261.  doi: 10.1007/s00222-004-0428-6.  Google Scholar

[4]

V. Bergelson, T. Tao and T. Ziegler, An inverse theorem for uniformity seminorms associated with the action of $F_p^{\infty}$,, Geom. Funct. Anal., 19 (2010), 1539.  doi: 10.1007/s00039-010-0051-1.  Google Scholar

[5]

J.-P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales,, (French) [On an ergodic theorem for diagonal measures], 306 (1988), 491.   Google Scholar

[6]

N. Frantzikinakis, B. Host and B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers,, J. Reine Angew. Math., 611 (2007), 131.  doi: 10.1515/CRELLE.2007.076.  Google Scholar

[7]

G. A. Freĭman, "Foundations of a Structural Theory of Set Addition,", Translations of Mathematical Monographs, 37 (1973).   Google Scholar

[8]

H. Furstenberg, "Nonconventional Ergodic Averages,", The legacy of John von Neumann (Hempstead, 50 (1988), 43.   Google Scholar

[9]

H. Furstenberg and B. Weiss, "A mean ergodic theorem for $1/N\sum^N_{n=1}f (T^n x)g(T^ {n^ 2}x)$,", Convergence in ergodic theory and probability (Columbus, 5 (1993), 193.   Google Scholar

[10]

W. T. Gowers, A new proof of Szemerédi's theorem for progressions of length four,, GAFA, 8 (1998), 529.  doi: 10.1007/s000390050065.  Google Scholar

[11]

-, A new proof of Szemerédi's theorem,, GAFA, 11 (2001), 465.   Google Scholar

[12]

B. Green, "Generalising the Hardy-Littlewood Method for Primes,", International Congress of Mathematicians. Vol. II, (2006), 373.   Google Scholar

[13]

B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions,, Annals of Math. (2), 167 (2008), 481.  doi: 10.4007/annals.2008.167.481.  Google Scholar

[14]

-, An inverse theorem for the Gowers $U^3$-norm, with applications,, Proc. Edinburgh Math. Soc., 51 (): 71.   Google Scholar

[15]

-, Linear equations in primes,, Ann. Math. (2), 171 (2010), 1753.   Google Scholar

[16]

-, The quantitative behaviour of polynomial orbits on nilmanifolds,, to appear in Ann. Math., ().   Google Scholar

[17]

-, The Möbius function is strongly orthogonal to nilsequences,, to appear in Ann. Math., ().   Google Scholar

[18]

-, An arithmetic regularity lemma, associated counting lemma, and applications,, in, 21 (): 261.   Google Scholar

[19]

B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers $U^4[N]$-norm,, Glasgow Math. J., 53 (2011), 1.  doi: 10.1017/S0017089510000546.  Google Scholar

[20]

-, An inverse theorem for the Gowers $U^{s+1}[N]$ norm,, preprint, ().   Google Scholar

[21]

I. J. Håland, Uniform distribution of generalized polynomials,, J. Number Theory, 45 (1993), 327.  doi: 10.1006/jnth.1993.1082.  Google Scholar

[22]

B. Host and B. Kra, Convergence of Conze-Lesigne averages,, Erg. Th. Dyn. Sys., 21 (2001), 493.   Google Scholar

[23]

-, Averaging along cubes,, Modern Dynamical Systems and Applications, (2004), 123.   Google Scholar

[24]

-, Nonconventional ergodic averages and nilmanifolds,, Ann. of Math. (2), 161 (2005), 397.   Google Scholar

[25]

-, Uniformity seminorms on $l^\infty$ and applications,, J. Anal. Math., 108 (2009), 219.  doi: 10.1007/s11854-009-0024-1.  Google Scholar

[26]

A. Leibman, Pointwise convergence of ergodic averages of polynomial sequences of translations on a nilmanifold,, Ergodic Theory and Dynamical Systems, 25 (2005), 201.  doi: 10.1017/S0143385704000215.  Google Scholar

[27]

-, A canonical form and the distribution of values of generalized polynomials,, to appear in Israel Journal of Mathematics., ().   Google Scholar

[28]

E. Lesigne, Équations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales,, (French) [Functional equations, 121 (1993), 315.   Google Scholar

[29]

I. Z. Ruzsa, Generalized arithmetical progressions and sumsets,, Acta Math. Hungar., 65 (1994), 379.  doi: 10.1007/BF01876039.  Google Scholar

[30]

A. Samorodnitsky, "Low-Degree Tests at Large Distances,", STOC'07, (2007), 506.   Google Scholar

[31]

B. Szegedy, Higher order Fourier analysis as an algebraic theory I,, preprint, ().   Google Scholar

[32]

-, Higher order Fourier analysis as an algebraic theory II,, preprint, ().   Google Scholar

[33]

-, Higher order Fourier analysis as an algebraic theory III,, preprint, ().   Google Scholar

[34]

T. Tao and T. Ziegler, The inverse conjecture for the Gowers norms over finite fields via the correspondence principle,, Anal. PDE, 3 (2010), 1.  doi: 10.2140/apde.2010.3.1.  Google Scholar

[35]

T. Tao and V. Vu, "Additive Combinatorics,", Cambridge Studies in Advanced Mathematics, 105 (2006).   Google Scholar

[36]

T. Ziegler, Universal characteristic factors and Furstenberg averages,, J. Amer. Math. Soc., 20 (2007), 53.  doi: 10.1090/S0894-0347-06-00532-7.  Google Scholar

show all references

References:
[1]

N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn and D. Ron, Testing low-degree polynomials over GF(2),, Approximation, 51 (2005), 188.  doi: 10.1109/TIT.2005.856958.  Google Scholar

[2]

A. Balog and E. Szemerédi, A statistical theorem of set addition,, Combinatorica, 14 (1994), 263.  doi: 10.1007/BF01212974.  Google Scholar

[3]

V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences,, (with an appendix by I. Ruzsa), 160 (2005), 261.  doi: 10.1007/s00222-004-0428-6.  Google Scholar

[4]

V. Bergelson, T. Tao and T. Ziegler, An inverse theorem for uniformity seminorms associated with the action of $F_p^{\infty}$,, Geom. Funct. Anal., 19 (2010), 1539.  doi: 10.1007/s00039-010-0051-1.  Google Scholar

[5]

J.-P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales,, (French) [On an ergodic theorem for diagonal measures], 306 (1988), 491.   Google Scholar

[6]

N. Frantzikinakis, B. Host and B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers,, J. Reine Angew. Math., 611 (2007), 131.  doi: 10.1515/CRELLE.2007.076.  Google Scholar

[7]

G. A. Freĭman, "Foundations of a Structural Theory of Set Addition,", Translations of Mathematical Monographs, 37 (1973).   Google Scholar

[8]

H. Furstenberg, "Nonconventional Ergodic Averages,", The legacy of John von Neumann (Hempstead, 50 (1988), 43.   Google Scholar

[9]

H. Furstenberg and B. Weiss, "A mean ergodic theorem for $1/N\sum^N_{n=1}f (T^n x)g(T^ {n^ 2}x)$,", Convergence in ergodic theory and probability (Columbus, 5 (1993), 193.   Google Scholar

[10]

W. T. Gowers, A new proof of Szemerédi's theorem for progressions of length four,, GAFA, 8 (1998), 529.  doi: 10.1007/s000390050065.  Google Scholar

[11]

-, A new proof of Szemerédi's theorem,, GAFA, 11 (2001), 465.   Google Scholar

[12]

B. Green, "Generalising the Hardy-Littlewood Method for Primes,", International Congress of Mathematicians. Vol. II, (2006), 373.   Google Scholar

[13]

B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions,, Annals of Math. (2), 167 (2008), 481.  doi: 10.4007/annals.2008.167.481.  Google Scholar

[14]

-, An inverse theorem for the Gowers $U^3$-norm, with applications,, Proc. Edinburgh Math. Soc., 51 (): 71.   Google Scholar

[15]

-, Linear equations in primes,, Ann. Math. (2), 171 (2010), 1753.   Google Scholar

[16]

-, The quantitative behaviour of polynomial orbits on nilmanifolds,, to appear in Ann. Math., ().   Google Scholar

[17]

-, The Möbius function is strongly orthogonal to nilsequences,, to appear in Ann. Math., ().   Google Scholar

[18]

-, An arithmetic regularity lemma, associated counting lemma, and applications,, in, 21 (): 261.   Google Scholar

[19]

B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers $U^4[N]$-norm,, Glasgow Math. J., 53 (2011), 1.  doi: 10.1017/S0017089510000546.  Google Scholar

[20]

-, An inverse theorem for the Gowers $U^{s+1}[N]$ norm,, preprint, ().   Google Scholar

[21]

I. J. Håland, Uniform distribution of generalized polynomials,, J. Number Theory, 45 (1993), 327.  doi: 10.1006/jnth.1993.1082.  Google Scholar

[22]

B. Host and B. Kra, Convergence of Conze-Lesigne averages,, Erg. Th. Dyn. Sys., 21 (2001), 493.   Google Scholar

[23]

-, Averaging along cubes,, Modern Dynamical Systems and Applications, (2004), 123.   Google Scholar

[24]

-, Nonconventional ergodic averages and nilmanifolds,, Ann. of Math. (2), 161 (2005), 397.   Google Scholar

[25]

-, Uniformity seminorms on $l^\infty$ and applications,, J. Anal. Math., 108 (2009), 219.  doi: 10.1007/s11854-009-0024-1.  Google Scholar

[26]

A. Leibman, Pointwise convergence of ergodic averages of polynomial sequences of translations on a nilmanifold,, Ergodic Theory and Dynamical Systems, 25 (2005), 201.  doi: 10.1017/S0143385704000215.  Google Scholar

[27]

-, A canonical form and the distribution of values of generalized polynomials,, to appear in Israel Journal of Mathematics., ().   Google Scholar

[28]

E. Lesigne, Équations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales,, (French) [Functional equations, 121 (1993), 315.   Google Scholar

[29]

I. Z. Ruzsa, Generalized arithmetical progressions and sumsets,, Acta Math. Hungar., 65 (1994), 379.  doi: 10.1007/BF01876039.  Google Scholar

[30]

A. Samorodnitsky, "Low-Degree Tests at Large Distances,", STOC'07, (2007), 506.   Google Scholar

[31]

B. Szegedy, Higher order Fourier analysis as an algebraic theory I,, preprint, ().   Google Scholar

[32]

-, Higher order Fourier analysis as an algebraic theory II,, preprint, ().   Google Scholar

[33]

-, Higher order Fourier analysis as an algebraic theory III,, preprint, ().   Google Scholar

[34]

T. Tao and T. Ziegler, The inverse conjecture for the Gowers norms over finite fields via the correspondence principle,, Anal. PDE, 3 (2010), 1.  doi: 10.2140/apde.2010.3.1.  Google Scholar

[35]

T. Tao and V. Vu, "Additive Combinatorics,", Cambridge Studies in Advanced Mathematics, 105 (2006).   Google Scholar

[36]

T. Ziegler, Universal characteristic factors and Furstenberg averages,, J. Amer. Math. Soc., 20 (2007), 53.  doi: 10.1090/S0894-0347-06-00532-7.  Google Scholar

[1]

Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]