2011, 18: 91-96. doi: 10.3934/era.2011.18.91

Deligne pairing and determinant bundle

1. 

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

2. 

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Lahnberge, Hans-Meerwein-Strasse, D-35032 Marburg, Germany

3. 

Graduate School of Mathematics, Kyushu University Fukuoka, 819-0395, Japan

Received  March 2011 Revised  June 2011 Published  July 2011

Let $X \rightarrow\ S$ be a smooth projective surjective morphism, where $X$ and $S$ are integral schemes over $\mathbb C$. Let $L_0\, L_1\, \cdots \, L_{n-1}\, L_{n}$ be line bundles over $X$. There is a natural isomorphism of the Deligne pairing 〈$L_0\, \cdots\, L_{n}$〉with the determinant line bundle $Det(\otimes_{i=0}^{n} (L_i- \mathcal O_{X}))$.
Citation: Indranil Biswas, Georg Schumacher, Lin Weng. Deligne pairing and determinant bundle. Electronic Research Announcements, 2011, 18: 91-96. doi: 10.3934/era.2011.18.91
References:
[1]

J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles. I: Bott-Chern forms and analytic torsion,, Commun. Math. Phys., 115 (1988), 49.  doi: 10.1007/BF01238853.  Google Scholar

[2]

P. Deligne, "Le Déterminant de la Cohomologie,", Current Trends in Arithmetical Algebraic Geometry, 67 (1987), 93.   Google Scholar

[3]

R. Elkik, Métriques sur les fibrés d'intersection,, Duke Math. Jour., 61 (1990), 303.  doi: 10.1215/S0012-7094-90-06113-7.  Google Scholar

[4]

J. Franke, Chow categories,, Algebraic Geometry (Berlin, 76 (1990), 101.   Google Scholar

[5]

C. Gasbarri, Heights and geometric invariant theory,, Forum Math., 12 (2000), 135.  doi: 10.1515/form.2000.001.  Google Scholar

[6]

A. Fujiki and G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics,, Publ. Res. Inst. Math. Sci., 26 (1990), 101.  doi: 10.2977/prims/1195171664.  Google Scholar

[7]

F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div,", Math. Scand., 39 (1976), 19.   Google Scholar

[8]

S. Kobayashi, "Differential Geometry of Complex Vector Bundles,", Publications of the Mathematical Society of Japan, 15 (1987).   Google Scholar

[9]

T. Mabuchi and L. Weng, Kähler-Einstein metrics and Chow-Mumford stability,, preprint, (1998).   Google Scholar

[10]

D. H. Phong and J. Sturm, Scalar curvature, moment maps, and the Deligne pairing,, Amer. Jour. Math., 126 (2004), 693.  doi: 10.1353/ajm.2004.0019.  Google Scholar

[11]

D. H. Phong, J. Ross and J. Sturm, Deligne pairings and the Knudsen-Mumford expansion,, Jour. Diff. Geom., 78 (2008), 475.   Google Scholar

[12]

D. G. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces,, (Russian), 19 (1985), 37.   Google Scholar

[13]

S. Zhang, Heights and reductions of semi-stable varieties,, Compos. Math., 104 (1996), 77.   Google Scholar

show all references

References:
[1]

J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles. I: Bott-Chern forms and analytic torsion,, Commun. Math. Phys., 115 (1988), 49.  doi: 10.1007/BF01238853.  Google Scholar

[2]

P. Deligne, "Le Déterminant de la Cohomologie,", Current Trends in Arithmetical Algebraic Geometry, 67 (1987), 93.   Google Scholar

[3]

R. Elkik, Métriques sur les fibrés d'intersection,, Duke Math. Jour., 61 (1990), 303.  doi: 10.1215/S0012-7094-90-06113-7.  Google Scholar

[4]

J. Franke, Chow categories,, Algebraic Geometry (Berlin, 76 (1990), 101.   Google Scholar

[5]

C. Gasbarri, Heights and geometric invariant theory,, Forum Math., 12 (2000), 135.  doi: 10.1515/form.2000.001.  Google Scholar

[6]

A. Fujiki and G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics,, Publ. Res. Inst. Math. Sci., 26 (1990), 101.  doi: 10.2977/prims/1195171664.  Google Scholar

[7]

F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div,", Math. Scand., 39 (1976), 19.   Google Scholar

[8]

S. Kobayashi, "Differential Geometry of Complex Vector Bundles,", Publications of the Mathematical Society of Japan, 15 (1987).   Google Scholar

[9]

T. Mabuchi and L. Weng, Kähler-Einstein metrics and Chow-Mumford stability,, preprint, (1998).   Google Scholar

[10]

D. H. Phong and J. Sturm, Scalar curvature, moment maps, and the Deligne pairing,, Amer. Jour. Math., 126 (2004), 693.  doi: 10.1353/ajm.2004.0019.  Google Scholar

[11]

D. H. Phong, J. Ross and J. Sturm, Deligne pairings and the Knudsen-Mumford expansion,, Jour. Diff. Geom., 78 (2008), 475.   Google Scholar

[12]

D. G. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces,, (Russian), 19 (1985), 37.   Google Scholar

[13]

S. Zhang, Heights and reductions of semi-stable varieties,, Compos. Math., 104 (1996), 77.   Google Scholar

[1]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[2]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]