-
Previous Article
Simple loops on 2-bridge spheres in 2-bridge link complements
- ERA-MS Home
- This Volume
-
Next Article
An inverse theorem for the Gowers $U^{s+1}[N]$-norm
Deligne pairing and determinant bundle
1. | School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India |
2. | Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Lahnberge, Hans-Meerwein-Strasse, D-35032 Marburg, Germany |
3. | Graduate School of Mathematics, Kyushu University Fukuoka, 819-0395, Japan |
References:
[1] |
J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles. I: Bott-Chern forms and analytic torsion,, Commun. Math. Phys., 115 (1988), 49.
doi: 10.1007/BF01238853. |
[2] |
P. Deligne, "Le Déterminant de la Cohomologie,", Current Trends in Arithmetical Algebraic Geometry, 67 (1987), 93.
|
[3] |
R. Elkik, Métriques sur les fibrés d'intersection,, Duke Math. Jour., 61 (1990), 303.
doi: 10.1215/S0012-7094-90-06113-7. |
[4] |
J. Franke, Chow categories,, Algebraic Geometry (Berlin, 76 (1990), 101.
|
[5] |
C. Gasbarri, Heights and geometric invariant theory,, Forum Math., 12 (2000), 135.
doi: 10.1515/form.2000.001. |
[6] |
A. Fujiki and G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics,, Publ. Res. Inst. Math. Sci., 26 (1990), 101.
doi: 10.2977/prims/1195171664. |
[7] |
F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div,", Math. Scand., 39 (1976), 19.
|
[8] |
S. Kobayashi, "Differential Geometry of Complex Vector Bundles,", Publications of the Mathematical Society of Japan, 15 (1987).
|
[9] |
T. Mabuchi and L. Weng, Kähler-Einstein metrics and Chow-Mumford stability,, preprint, (1998). Google Scholar |
[10] |
D. H. Phong and J. Sturm, Scalar curvature, moment maps, and the Deligne pairing,, Amer. Jour. Math., 126 (2004), 693.
doi: 10.1353/ajm.2004.0019. |
[11] |
D. H. Phong, J. Ross and J. Sturm, Deligne pairings and the Knudsen-Mumford expansion,, Jour. Diff. Geom., 78 (2008), 475.
|
[12] |
D. G. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces,, (Russian), 19 (1985), 37.
|
[13] |
S. Zhang, Heights and reductions of semi-stable varieties,, Compos. Math., 104 (1996), 77.
|
show all references
References:
[1] |
J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles. I: Bott-Chern forms and analytic torsion,, Commun. Math. Phys., 115 (1988), 49.
doi: 10.1007/BF01238853. |
[2] |
P. Deligne, "Le Déterminant de la Cohomologie,", Current Trends in Arithmetical Algebraic Geometry, 67 (1987), 93.
|
[3] |
R. Elkik, Métriques sur les fibrés d'intersection,, Duke Math. Jour., 61 (1990), 303.
doi: 10.1215/S0012-7094-90-06113-7. |
[4] |
J. Franke, Chow categories,, Algebraic Geometry (Berlin, 76 (1990), 101.
|
[5] |
C. Gasbarri, Heights and geometric invariant theory,, Forum Math., 12 (2000), 135.
doi: 10.1515/form.2000.001. |
[6] |
A. Fujiki and G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics,, Publ. Res. Inst. Math. Sci., 26 (1990), 101.
doi: 10.2977/prims/1195171664. |
[7] |
F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div,", Math. Scand., 39 (1976), 19.
|
[8] |
S. Kobayashi, "Differential Geometry of Complex Vector Bundles,", Publications of the Mathematical Society of Japan, 15 (1987).
|
[9] |
T. Mabuchi and L. Weng, Kähler-Einstein metrics and Chow-Mumford stability,, preprint, (1998). Google Scholar |
[10] |
D. H. Phong and J. Sturm, Scalar curvature, moment maps, and the Deligne pairing,, Amer. Jour. Math., 126 (2004), 693.
doi: 10.1353/ajm.2004.0019. |
[11] |
D. H. Phong, J. Ross and J. Sturm, Deligne pairings and the Knudsen-Mumford expansion,, Jour. Diff. Geom., 78 (2008), 475.
|
[12] |
D. G. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces,, (Russian), 19 (1985), 37.
|
[13] |
S. Zhang, Heights and reductions of semi-stable varieties,, Compos. Math., 104 (1996), 77.
|
[1] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[2] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]