2011, 18: 97-111. doi: 10.3934/era.2011.18.97

Simple loops on 2-bridge spheres in 2-bridge link complements

1. 

Department of Mathematics, Pusan National University, San-30 Jangjeon-Dong, Geumjung-Gu, Pusan, 609-735, South Korea

2. 

Department of Mathematics,, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan

Received  April 2011 Revised  June 2011 Published  August 2011

The purpose of this note is to announce complete answers to the following questions. (1) For an essential simple loop on a 2-bridge sphere in a 2-bridge link complement, when is it null-homotopic in the link complement? (2) For two distinct essential simple loops on a 2-bridge sphere in a 2-bridge link complement, when are they homotopic in the link complement? We also announce applications of these results to character varieties and McShane's identity.
Citation: Donghi Lee, Makoto Sakuma. Simple loops on 2-bridge spheres in 2-bridge link complements. Electronic Research Announcements, 2011, 18: 97-111. doi: 10.3934/era.2011.18.97
References:
[1]

C. Adams, Hyperbolic 3-manifolds with two generators,, Comm. Anal. Geom., 4 (1996), 181.   Google Scholar

[2]

H. Akiyoshi, H. Miyachi and M. Sakuma, A refinement of McShane's identity for quasifuchsian punctured torus groups,, In the Tradition of Ahlfors and Bers, 355 (2004), 21.   Google Scholar

[3]

H. Akiyoshi, H. Miyachi and M. Sakuma, Variations of McShane's identity for punctured surface groups,, Proceedings of the Workshop, 329 (2006), 151.   Google Scholar

[4]

H. Akiyoahi, M. Sakuma, M. Wada and Y. Yamashita, "Punctured Torus Groups and 2-Bridge Knot Groups (I),", Lecture Notes in Mathematics, 1909 (1909).   Google Scholar

[5]

K. I. Appel and P. E. Schupp, The conjugacy problem for the group of any tame alternating knot is solvable,, Proc. Amer. Math. Soc., 33 (1972), 329.  doi: 10.1090/S0002-9939-1972-0294460-X.  Google Scholar

[6]

B. H. Bowditch, A proof of McShane's identity via Markoff triples,, Bull. London Math. Soc., 28 (1996), 73.  doi: 10.1112/blms/28.1.73.  Google Scholar

[7]

B. H. Bowditch, Markoff triples and quasi-Fuchsian groups,, Proc. London Math. Soc. (3), 77 (1998), 697.  doi: 10.1112/S0024611598000604.  Google Scholar

[8]

B. H. Bowditch, A variation of McShane's identity for once-punctured torus bundles,, Topology, 36 (1997), 325.  doi: 10.1016/0040-9383(96)00017-1.  Google Scholar

[9]

C. Gordon, "Problems,", Workshop on Heegaard Splittings, 12 (2007), 401.   Google Scholar

[10]

K. Johnsgard, The conjugacy problem for the groups of alternating prime tame links is polynomial-time,, Trans. Amer. Math. Soc., 349 (1997), 857.  doi: 10.1090/S0002-9947-97-01617-6.  Google Scholar

[11]

D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: Homotopically trivial simple loops on 2-bridge spheres,, Proc. London Math. Soc., ().   Google Scholar

[12]

D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (I),, \arXiv{1010.2232}., ().   Google Scholar

[13]

D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (II),, \arXiv{1103.0856}., ().   Google Scholar

[14]

D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (III),, preliminary notes., ().   Google Scholar

[15]

D. Lee and M. Sakuma, A variation of McShane's identity for 2-bridge links,, in preparation., ().   Google Scholar

[16]

R. C. Lyndon and P. E. Schupp, "Combinatorial Group Theory,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 89 (1977).   Google Scholar

[17]

G. McShane, "A Remarkable Identity for Lengths of Curves,", Ph.D. Thesis, (1991).   Google Scholar

[18]

G. McShane, Simple geodesics and a series constant over Teichmuller space,, Invent. Math., 132 (1998), 607.  doi: 10.1007/s002220050235.  Google Scholar

[19]

M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces,, Invent. Math., 167 (2007), 179.  doi: 10.1007/s00222-006-0013-2.  Google Scholar

[20]

T. Ohtsuki, R. Riley and M. Sakuma, Epimorphisms between 2-bridge link groups,, Teh Zieschang Gedenkschrift, 14 (2008), 417.   Google Scholar

[21]

J.-P. Préaux, Conjugacy problems in groups of oriented geometrizable 3-manifolds,, Topology, 45 (2006), 171.  doi: 10.1016/j.top.2005.06.002.  Google Scholar

[22]

R. Riley, Parabolic representations of knot groups. I,, Proc. London Math. Soc. (3), 24 (1972), 217.   Google Scholar

[23]

M. Sakuma, Variations of McShane's identity for the Riley slice and 2-bridge links,, In, 1104 (1999), 103.   Google Scholar

[24]

Z. Sela, The conjugacy problem for knot groups,, Topology, 32 (1993), 363.  doi: 10.1016/0040-9383(93)90026-R.  Google Scholar

[25]

S. P. Tan, Private communication,, May, (2011).   Google Scholar

[26]

S. P. Tan, Y. L. Wong and Y. Zhang, The $\SL(2,\CC)$ character variety of a one-holed torus,, Electon. Res. Announc. Amer. Math. Soc., 11 (2005), 103.  doi: 10.1090/S1079-6762-05-00153-8.  Google Scholar

[27]

S. P. Tan, Y. L. Wong and Y. Zhang, Generalizations of McShane's identity to hyperbolic cone-surfaces,, J. Differential Geom., 72 (2006), 73.   Google Scholar

[28]

S. P. Tan, Y. L. Wong and Y. Zhang, Necessary and sufficient conditions for McShane's identity and variations,, Geom. Dedicata, 119 (2006), 199.  doi: 10.1007/s10711-006-9069-9.  Google Scholar

[29]

S. P. Tan, Y. L. Wong and Y. Zhang, Generalized Markoff maps and McShane's identity,, Adv. Math., 217 (2008), 761.  doi: 10.1016/j.aim.2007.09.004.  Google Scholar

[30]

S. P. Tan, Y. L. Wong and Y. Zhang, End invariants for $SL(2,\CC)$ characters of the one-holed torus,, Amer. J. Math., 130 (2008), 385.  doi: 10.1353/ajm.2008.0010.  Google Scholar

[31]

S. P. Tan, Y. L. Wong and Y. Zhang, McShane's identity for classical Schottky groups,, Pacific J. Math., 237 (2008), 183.  doi: 10.2140/pjm.2008.237.183.  Google Scholar

[32]

C. M. Weinbaum, The word and conjugacy problems for the knot group of any tame, prime, alternating knot,, Proc. Amer. Math. Soc., 30 (1971), 22.  doi: 10.1090/S0002-9939-1971-0279169-X.  Google Scholar

show all references

References:
[1]

C. Adams, Hyperbolic 3-manifolds with two generators,, Comm. Anal. Geom., 4 (1996), 181.   Google Scholar

[2]

H. Akiyoshi, H. Miyachi and M. Sakuma, A refinement of McShane's identity for quasifuchsian punctured torus groups,, In the Tradition of Ahlfors and Bers, 355 (2004), 21.   Google Scholar

[3]

H. Akiyoshi, H. Miyachi and M. Sakuma, Variations of McShane's identity for punctured surface groups,, Proceedings of the Workshop, 329 (2006), 151.   Google Scholar

[4]

H. Akiyoahi, M. Sakuma, M. Wada and Y. Yamashita, "Punctured Torus Groups and 2-Bridge Knot Groups (I),", Lecture Notes in Mathematics, 1909 (1909).   Google Scholar

[5]

K. I. Appel and P. E. Schupp, The conjugacy problem for the group of any tame alternating knot is solvable,, Proc. Amer. Math. Soc., 33 (1972), 329.  doi: 10.1090/S0002-9939-1972-0294460-X.  Google Scholar

[6]

B. H. Bowditch, A proof of McShane's identity via Markoff triples,, Bull. London Math. Soc., 28 (1996), 73.  doi: 10.1112/blms/28.1.73.  Google Scholar

[7]

B. H. Bowditch, Markoff triples and quasi-Fuchsian groups,, Proc. London Math. Soc. (3), 77 (1998), 697.  doi: 10.1112/S0024611598000604.  Google Scholar

[8]

B. H. Bowditch, A variation of McShane's identity for once-punctured torus bundles,, Topology, 36 (1997), 325.  doi: 10.1016/0040-9383(96)00017-1.  Google Scholar

[9]

C. Gordon, "Problems,", Workshop on Heegaard Splittings, 12 (2007), 401.   Google Scholar

[10]

K. Johnsgard, The conjugacy problem for the groups of alternating prime tame links is polynomial-time,, Trans. Amer. Math. Soc., 349 (1997), 857.  doi: 10.1090/S0002-9947-97-01617-6.  Google Scholar

[11]

D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: Homotopically trivial simple loops on 2-bridge spheres,, Proc. London Math. Soc., ().   Google Scholar

[12]

D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (I),, \arXiv{1010.2232}., ().   Google Scholar

[13]

D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (II),, \arXiv{1103.0856}., ().   Google Scholar

[14]

D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (III),, preliminary notes., ().   Google Scholar

[15]

D. Lee and M. Sakuma, A variation of McShane's identity for 2-bridge links,, in preparation., ().   Google Scholar

[16]

R. C. Lyndon and P. E. Schupp, "Combinatorial Group Theory,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 89 (1977).   Google Scholar

[17]

G. McShane, "A Remarkable Identity for Lengths of Curves,", Ph.D. Thesis, (1991).   Google Scholar

[18]

G. McShane, Simple geodesics and a series constant over Teichmuller space,, Invent. Math., 132 (1998), 607.  doi: 10.1007/s002220050235.  Google Scholar

[19]

M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces,, Invent. Math., 167 (2007), 179.  doi: 10.1007/s00222-006-0013-2.  Google Scholar

[20]

T. Ohtsuki, R. Riley and M. Sakuma, Epimorphisms between 2-bridge link groups,, Teh Zieschang Gedenkschrift, 14 (2008), 417.   Google Scholar

[21]

J.-P. Préaux, Conjugacy problems in groups of oriented geometrizable 3-manifolds,, Topology, 45 (2006), 171.  doi: 10.1016/j.top.2005.06.002.  Google Scholar

[22]

R. Riley, Parabolic representations of knot groups. I,, Proc. London Math. Soc. (3), 24 (1972), 217.   Google Scholar

[23]

M. Sakuma, Variations of McShane's identity for the Riley slice and 2-bridge links,, In, 1104 (1999), 103.   Google Scholar

[24]

Z. Sela, The conjugacy problem for knot groups,, Topology, 32 (1993), 363.  doi: 10.1016/0040-9383(93)90026-R.  Google Scholar

[25]

S. P. Tan, Private communication,, May, (2011).   Google Scholar

[26]

S. P. Tan, Y. L. Wong and Y. Zhang, The $\SL(2,\CC)$ character variety of a one-holed torus,, Electon. Res. Announc. Amer. Math. Soc., 11 (2005), 103.  doi: 10.1090/S1079-6762-05-00153-8.  Google Scholar

[27]

S. P. Tan, Y. L. Wong and Y. Zhang, Generalizations of McShane's identity to hyperbolic cone-surfaces,, J. Differential Geom., 72 (2006), 73.   Google Scholar

[28]

S. P. Tan, Y. L. Wong and Y. Zhang, Necessary and sufficient conditions for McShane's identity and variations,, Geom. Dedicata, 119 (2006), 199.  doi: 10.1007/s10711-006-9069-9.  Google Scholar

[29]

S. P. Tan, Y. L. Wong and Y. Zhang, Generalized Markoff maps and McShane's identity,, Adv. Math., 217 (2008), 761.  doi: 10.1016/j.aim.2007.09.004.  Google Scholar

[30]

S. P. Tan, Y. L. Wong and Y. Zhang, End invariants for $SL(2,\CC)$ characters of the one-holed torus,, Amer. J. Math., 130 (2008), 385.  doi: 10.1353/ajm.2008.0010.  Google Scholar

[31]

S. P. Tan, Y. L. Wong and Y. Zhang, McShane's identity for classical Schottky groups,, Pacific J. Math., 237 (2008), 183.  doi: 10.2140/pjm.2008.237.183.  Google Scholar

[32]

C. M. Weinbaum, The word and conjugacy problems for the knot group of any tame, prime, alternating knot,, Proc. Amer. Math. Soc., 30 (1971), 22.  doi: 10.1090/S0002-9939-1971-0279169-X.  Google Scholar

[1]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[4]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[7]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[8]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[9]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[10]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]