2012, 19: 1-17. doi: 10.3934/era.2012.19.1

Higher pentagram maps, weighted directed networks, and cluster dynamics

1. 

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48823, United States

3. 

Department of Mathematics, Penn State University, University Park, PA 16802

4. 

Department of Mathematics and Department of Computer Science, University of Haifa, Haifa, Mount Carmel 31905, Israel

Received  October 2011 Revised  December 2011 Published  January 2012

The pentagram map was extensively studied in a series of papers by V. Ovsienko, R. Schwartz and S. Tabachnikov. It was recently interpreted by M. Glick as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of geometrically meaningful discrete integrable maps.
Citation: Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1
References:
[1]

Duke Math. J., 116 (2003), 525-566. doi: 10.1215/S0012-7094-03-11635-X.  Google Scholar

[2]

Amer. Math. Soc., Providence, RI, 2008.  Google Scholar

[3]

Academic Press, New York, 1953.  Google Scholar

[4]

in "Dynamical Systems," IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, (2001), 177-332.  Google Scholar

[5]

Springer-Verlag, Berlin, 1987.  Google Scholar

[6]

Compos. Math., 143 (2007), 112-164. doi: 10.1112/S0010437X06002521.  Google Scholar

[7]

Selecta Math., 15 (2009), 61-103. doi: 10.1007/s00029-009-0523-z.  Google Scholar

[8]

Amer. Math. Soc., Providence, RI, 2010.  Google Scholar

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in an annulus,, J. Europ. Math. Soc., ().   Google Scholar

[10]

Acta Math., 206 (2011), 245-310. doi: 10.1007/s11511-011-0063-1.  Google Scholar

[11]

Adv. Math., 227 (2011), 1019-1045. doi: 10.1016/j.aim.2011.02.018.  Google Scholar

[12]

, M. Glick,, private communication., ().   Google Scholar

[13]

A. Goncharov and R. Kenyon, Dimers and cluster integrable systems,, preprint, ().   Google Scholar

[14]

B. Khesin and F. Soloviev, Integrability of a space pentagram map,, in preparation., ().   Google Scholar

[15]

J. Phys. A, 35 (2002), 6125-6144. doi: 10.1088/0305-4470/35/29/313.  Google Scholar

[16]

G. Mari Beffa, On generalizations of the pentagram map: Discretizations of AGD flows,, preprint, ().   Google Scholar

[17]

S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons,, Ann. Inst. Fourier, ().   Google Scholar

[18]

Acta Appl. Math., 39 (1995), 133-158. doi: 10.1007/BF00994631.  Google Scholar

[19]

in "Dynamical systems," VII, Encycl. Math. Sci., 16, Springer, Berlin, (1994), 83-259.  Google Scholar

[20]

Electron. Res. Announc. Math. Sci., 16 (2009), 1-8.  Google Scholar

[21]

Commun. Math. Phys., 299 (2010), 409-446. doi: 10.1007/s00220-010-1075-y.  Google Scholar

[22]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons,, preprint, ().   Google Scholar

[23]

A. Postnikov, Total positivity, Grassmannians, and networks,, preprint, ().   Google Scholar

[24]

Duke Math. J., 86 (1997), 347-389. doi: 10.1215/S0012-7094-97-08611-7.  Google Scholar

[25]

Experiment. Math., 1 (1992), 71-81.  Google Scholar

[26]

Experiment. Math., 10 (2001), 519-528.  Google Scholar

[27]

J. Fixed Point Theory Appl., 3 (2008), 379-409. doi: 10.1007/s11784-008-0079-0.  Google Scholar

[28]

Math. Intelligencer, 32 (2010), 31-34. doi: 10.1007/s00283-010-9137-8.  Google Scholar

[29]

Electron. J. Comb., 18 (2011), 171. Google Scholar

[30]

F. Soloviev, Integrability of the pentagram map,, preprint, ().   Google Scholar

[31]

J. Phys. A, 30 (1997), 2235-2249. doi: 10.1088/0305-4470/30/6/041.  Google Scholar

show all references

References:
[1]

Duke Math. J., 116 (2003), 525-566. doi: 10.1215/S0012-7094-03-11635-X.  Google Scholar

[2]

Amer. Math. Soc., Providence, RI, 2008.  Google Scholar

[3]

Academic Press, New York, 1953.  Google Scholar

[4]

in "Dynamical Systems," IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, (2001), 177-332.  Google Scholar

[5]

Springer-Verlag, Berlin, 1987.  Google Scholar

[6]

Compos. Math., 143 (2007), 112-164. doi: 10.1112/S0010437X06002521.  Google Scholar

[7]

Selecta Math., 15 (2009), 61-103. doi: 10.1007/s00029-009-0523-z.  Google Scholar

[8]

Amer. Math. Soc., Providence, RI, 2010.  Google Scholar

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in an annulus,, J. Europ. Math. Soc., ().   Google Scholar

[10]

Acta Math., 206 (2011), 245-310. doi: 10.1007/s11511-011-0063-1.  Google Scholar

[11]

Adv. Math., 227 (2011), 1019-1045. doi: 10.1016/j.aim.2011.02.018.  Google Scholar

[12]

, M. Glick,, private communication., ().   Google Scholar

[13]

A. Goncharov and R. Kenyon, Dimers and cluster integrable systems,, preprint, ().   Google Scholar

[14]

B. Khesin and F. Soloviev, Integrability of a space pentagram map,, in preparation., ().   Google Scholar

[15]

J. Phys. A, 35 (2002), 6125-6144. doi: 10.1088/0305-4470/35/29/313.  Google Scholar

[16]

G. Mari Beffa, On generalizations of the pentagram map: Discretizations of AGD flows,, preprint, ().   Google Scholar

[17]

S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons,, Ann. Inst. Fourier, ().   Google Scholar

[18]

Acta Appl. Math., 39 (1995), 133-158. doi: 10.1007/BF00994631.  Google Scholar

[19]

in "Dynamical systems," VII, Encycl. Math. Sci., 16, Springer, Berlin, (1994), 83-259.  Google Scholar

[20]

Electron. Res. Announc. Math. Sci., 16 (2009), 1-8.  Google Scholar

[21]

Commun. Math. Phys., 299 (2010), 409-446. doi: 10.1007/s00220-010-1075-y.  Google Scholar

[22]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons,, preprint, ().   Google Scholar

[23]

A. Postnikov, Total positivity, Grassmannians, and networks,, preprint, ().   Google Scholar

[24]

Duke Math. J., 86 (1997), 347-389. doi: 10.1215/S0012-7094-97-08611-7.  Google Scholar

[25]

Experiment. Math., 1 (1992), 71-81.  Google Scholar

[26]

Experiment. Math., 10 (2001), 519-528.  Google Scholar

[27]

J. Fixed Point Theory Appl., 3 (2008), 379-409. doi: 10.1007/s11784-008-0079-0.  Google Scholar

[28]

Math. Intelligencer, 32 (2010), 31-34. doi: 10.1007/s00283-010-9137-8.  Google Scholar

[29]

Electron. J. Comb., 18 (2011), 171. Google Scholar

[30]

F. Soloviev, Integrability of the pentagram map,, preprint, ().   Google Scholar

[31]

J. Phys. A, 30 (1997), 2235-2249. doi: 10.1088/0305-4470/30/6/041.  Google Scholar

[1]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[2]

Boris Khesin, Fedor Soloviev. The pentagram map in higher dimensions and KdV flows. Electronic Research Announcements, 2012, 19: 86-96. doi: 10.3934/era.2012.19.86

[3]

Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652

[4]

Gerhard Keller, Carlangelo Liverani. Coupled map lattices without cluster expansion. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 325-335. doi: 10.3934/dcds.2004.11.325

[5]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[6]

Hunseok Kang. Dynamics of local map of a discrete Brusselator model: eventually trapping regions and strange attractors. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 939-959. doi: 10.3934/dcds.2008.20.939

[7]

Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889

[8]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[9]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[10]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[11]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

[12]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[13]

Yuri N. Fedorov, Dmitry V. Zenkov. Dynamics of the discrete Chaplygin sleigh. Conference Publications, 2005, 2005 (Special) : 258-267. doi: 10.3934/proc.2005.2005.258

[14]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[15]

Peigen Cao, Fang Li, Siyang Liu, Jie Pan. A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27: 1-6. doi: 10.3934/era.2019006

[16]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[17]

Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297

[18]

Valentin Ovsienko, MichaeL Shapiro. Cluster algebras with Grassmann variables. Electronic Research Announcements, 2019, 26: 1-15. doi: 10.3934/era.2019.26.001

[19]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[20]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (4)

[Back to Top]