2012, 19: 1-17. doi: 10.3934/era.2012.19.1

Higher pentagram maps, weighted directed networks, and cluster dynamics

1. 

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48823, United States

3. 

Department of Mathematics, Penn State University, University Park, PA 16802

4. 

Department of Mathematics and Department of Computer Science, University of Haifa, Haifa, Mount Carmel 31905, Israel

Received  October 2011 Revised  December 2011 Published  January 2012

The pentagram map was extensively studied in a series of papers by V. Ovsienko, R. Schwartz and S. Tabachnikov. It was recently interpreted by M. Glick as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of geometrically meaningful discrete integrable maps.
Citation: Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1
References:
[1]

A. Bobenko and T. Hoffmann, Hexagonal circle patterns and integrable systems: Patterns with constant angles, Duke Math. J., 116 (2003), 525-566. doi: 10.1215/S0012-7094-03-11635-X.

[2]

A. Bobenko and Yu. Suris, "Discrete Differential Geometry. Integrable Structure," Amer. Math. Soc., Providence, RI, 2008.

[3]

H. Busemann and P. Kelly, "Projective geometry and projective metrics," Academic Press, New York, 1953.

[4]

B. Dubrovin, I. Krichever and S. Novikov, Integrable systems. I, in "Dynamical Systems," IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, (2001), 177-332.

[5]

L. Faddeev and L. Takhtajan, "Hamiltonian Methods in the Theory of Solitons," Springer-Verlag, Berlin, 1987.

[6]

S. Fomin and A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math., 143 (2007), 112-164. doi: 10.1112/S0010437X06002521.

[7]

M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in a disk, Selecta Math., 15 (2009), 61-103. doi: 10.1007/s00029-009-0523-z.

[8]

M. Gekhtman, M. Shapiro and A. Vainshtein, "Cluster Algebras and Poisson Geometry," Amer. Math. Soc., Providence, RI, 2010.

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in an annulus, J. Europ. Math. Soc., preprint, arXiv:0901.0020.

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math., 206 (2011), 245-310. doi: 10.1007/s11511-011-0063-1.

[11]

M. Glick, The pentagram map and $Y$-patterns, Adv. Math., 227 (2011), 1019-1045. doi: 10.1016/j.aim.2011.02.018.

[12]

, M. Glick, private communication.

[13]

A. Goncharov and R. Kenyon, Dimers and cluster integrable systems, preprint, arXiv:1107.5588.

[14]

B. Khesin and F. Soloviev, Integrability of a space pentagram map, in preparation.

[15]

B. Konopelchenko and W. Schief, Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy, J. Phys. A, 35 (2002), 6125-6144. doi: 10.1088/0305-4470/35/29/313.

[16]

G. Mari Beffa, On generalizations of the pentagram map: Discretizations of AGD flows, preprint, arXiv:1103.5047.

[17]

S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier, preprint, arXiv:1008.3359.

[18]

F. Nijhoff and H. Capel, The discrete Korteweg-de Vries equation, Acta Appl. Math., 39 (1995), 133-158. doi: 10.1007/BF00994631.

[19]

M. Olshanetsky, A. Perelomov, A. Reyman and M. Semenov-Tian-Shansky, Integrable systems. II, in "Dynamical systems," VII, Encycl. Math. Sci., 16, Springer, Berlin, (1994), 83-259.

[20]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Quasiperiodic motion for the Pentagram map, Electron. Res. Announc. Math. Sci., 16 (2009), 1-8.

[21]

V. Ovsienko, R. Schwartz and S. Tabachnikov, The Pentagram map: A discrete integrable system, Commun. Math. Phys., 299 (2010), 409-446. doi: 10.1007/s00220-010-1075-y.

[22]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons, preprint, arXiv:1107.3633.

[23]

A. Postnikov, Total positivity, Grassmannians, and networks, preprint, arXiv:math.CO/0609764.

[24]

O. Schramm, Circle patterns with the combinatorics of the square grid, Duke Math. J., 86 (1997), 347-389. doi: 10.1215/S0012-7094-97-08611-7.

[25]

R. Schwartz, The pentagram map, Experiment. Math., 1 (1992), 71-81.

[26]

R. Schwartz, The pentagram map is recurrent, Experiment. Math., 10 (2001), 519-528.

[27]

R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl., 3 (2008), 379-409. doi: 10.1007/s11784-008-0079-0.

[28]

R. Schwartz and S. Tabachnikov, Elementary surprises in projective geometry, Math. Intelligencer, 32 (2010), 31-34. doi: 10.1007/s00283-010-9137-8.

[29]

R. Schwartz and S. Tabachnikov, The pentagram integrals on inscribed polygons, Electron. J. Comb., 18 (2011), 171.

[30]

F. Soloviev, Integrability of the pentagram map, preprint, arXiv:1106.3950.

[31]

Yu. Suris, On some integrable systems related to the Toda lattice, J. Phys. A, 30 (1997), 2235-2249. doi: 10.1088/0305-4470/30/6/041.

show all references

References:
[1]

A. Bobenko and T. Hoffmann, Hexagonal circle patterns and integrable systems: Patterns with constant angles, Duke Math. J., 116 (2003), 525-566. doi: 10.1215/S0012-7094-03-11635-X.

[2]

A. Bobenko and Yu. Suris, "Discrete Differential Geometry. Integrable Structure," Amer. Math. Soc., Providence, RI, 2008.

[3]

H. Busemann and P. Kelly, "Projective geometry and projective metrics," Academic Press, New York, 1953.

[4]

B. Dubrovin, I. Krichever and S. Novikov, Integrable systems. I, in "Dynamical Systems," IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, (2001), 177-332.

[5]

L. Faddeev and L. Takhtajan, "Hamiltonian Methods in the Theory of Solitons," Springer-Verlag, Berlin, 1987.

[6]

S. Fomin and A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math., 143 (2007), 112-164. doi: 10.1112/S0010437X06002521.

[7]

M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in a disk, Selecta Math., 15 (2009), 61-103. doi: 10.1007/s00029-009-0523-z.

[8]

M. Gekhtman, M. Shapiro and A. Vainshtein, "Cluster Algebras and Poisson Geometry," Amer. Math. Soc., Providence, RI, 2010.

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in an annulus, J. Europ. Math. Soc., preprint, arXiv:0901.0020.

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math., 206 (2011), 245-310. doi: 10.1007/s11511-011-0063-1.

[11]

M. Glick, The pentagram map and $Y$-patterns, Adv. Math., 227 (2011), 1019-1045. doi: 10.1016/j.aim.2011.02.018.

[12]

, M. Glick, private communication.

[13]

A. Goncharov and R. Kenyon, Dimers and cluster integrable systems, preprint, arXiv:1107.5588.

[14]

B. Khesin and F. Soloviev, Integrability of a space pentagram map, in preparation.

[15]

B. Konopelchenko and W. Schief, Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy, J. Phys. A, 35 (2002), 6125-6144. doi: 10.1088/0305-4470/35/29/313.

[16]

G. Mari Beffa, On generalizations of the pentagram map: Discretizations of AGD flows, preprint, arXiv:1103.5047.

[17]

S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier, preprint, arXiv:1008.3359.

[18]

F. Nijhoff and H. Capel, The discrete Korteweg-de Vries equation, Acta Appl. Math., 39 (1995), 133-158. doi: 10.1007/BF00994631.

[19]

M. Olshanetsky, A. Perelomov, A. Reyman and M. Semenov-Tian-Shansky, Integrable systems. II, in "Dynamical systems," VII, Encycl. Math. Sci., 16, Springer, Berlin, (1994), 83-259.

[20]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Quasiperiodic motion for the Pentagram map, Electron. Res. Announc. Math. Sci., 16 (2009), 1-8.

[21]

V. Ovsienko, R. Schwartz and S. Tabachnikov, The Pentagram map: A discrete integrable system, Commun. Math. Phys., 299 (2010), 409-446. doi: 10.1007/s00220-010-1075-y.

[22]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons, preprint, arXiv:1107.3633.

[23]

A. Postnikov, Total positivity, Grassmannians, and networks, preprint, arXiv:math.CO/0609764.

[24]

O. Schramm, Circle patterns with the combinatorics of the square grid, Duke Math. J., 86 (1997), 347-389. doi: 10.1215/S0012-7094-97-08611-7.

[25]

R. Schwartz, The pentagram map, Experiment. Math., 1 (1992), 71-81.

[26]

R. Schwartz, The pentagram map is recurrent, Experiment. Math., 10 (2001), 519-528.

[27]

R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl., 3 (2008), 379-409. doi: 10.1007/s11784-008-0079-0.

[28]

R. Schwartz and S. Tabachnikov, Elementary surprises in projective geometry, Math. Intelligencer, 32 (2010), 31-34. doi: 10.1007/s00283-010-9137-8.

[29]

R. Schwartz and S. Tabachnikov, The pentagram integrals on inscribed polygons, Electron. J. Comb., 18 (2011), 171.

[30]

F. Soloviev, Integrability of the pentagram map, preprint, arXiv:1106.3950.

[31]

Yu. Suris, On some integrable systems related to the Toda lattice, J. Phys. A, 30 (1997), 2235-2249. doi: 10.1088/0305-4470/30/6/041.

[1]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[2]

Boris Khesin, Fedor Soloviev. The pentagram map in higher dimensions and KdV flows. Electronic Research Announcements, 2012, 19: 86-96. doi: 10.3934/era.2012.19.86

[3]

Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652

[4]

Gerhard Keller, Carlangelo Liverani. Coupled map lattices without cluster expansion. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 325-335. doi: 10.3934/dcds.2004.11.325

[5]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[6]

Hunseok Kang. Dynamics of local map of a discrete Brusselator model: eventually trapping regions and strange attractors. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 939-959. doi: 10.3934/dcds.2008.20.939

[7]

Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889

[8]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[9]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[10]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[11]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

[12]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[13]

Yuri N. Fedorov, Dmitry V. Zenkov. Dynamics of the discrete Chaplygin sleigh. Conference Publications, 2005, 2005 (Special) : 258-267. doi: 10.3934/proc.2005.2005.258

[14]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[15]

Peigen Cao, Fang Li, Siyang Liu, Jie Pan. A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27: 1-6. doi: 10.3934/era.2019006

[16]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[17]

Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297

[18]

Valentin Ovsienko, MichaeL Shapiro. Cluster algebras with Grassmann variables. Electronic Research Announcements, 2019, 26: 1-15. doi: 10.3934/era.2019.26.001

[19]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[20]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (123)
  • HTML views (0)
  • Cited by (4)

[Back to Top]