-
Previous Article
On GIT quotients of Hilbert and Chow schemes of curves
- ERA-MS Home
- This Volume
-
Next Article
Higher pentagram maps, weighted directed networks, and cluster dynamics
Constructing automorphic representations in split classical groups
1. | School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Israel |
References:
[1] |
R. Carter, "Finite Groups of Lie Type," J. Wiley & Sons, 1985. |
[2] |
J. Cogdell, H. Kim, I. Piatetski-Shapiro and F. Shahidi, Functoriality for the classical groups, 99 (2004), 163-233. |
[3] |
D. Collingwood and W. McGovern, "Nilpotent Orbits in Semisimple Lie Algebras," Van Nostrand Reinhold, 1991. |
[4] |
D. Ginzburg, "A construction of CAP representations for classical groups," International Math. Research Notices, 20 (2003), 1123-1140.
doi: 10.1155/S1073792803212228. |
[5] |
D. Ginzburg, Certain conjectures relating unipotent orbits to automorphic representations, Israel Journal of Mathematics, 151 (2006), 323-356.
doi: 10.1007/BF02777366. |
[6] |
D. Ginzburg, Endoscopic lifting in classical groups and poles of tensor $L$ functions, Duke Math. Journal, 141 (2008), 447-503.
doi: 10.1215/00127094-2007-002. |
[7] |
D. Ginzburg, On the lifting from $PGL_2\times PGL_2$ to $G_2$, International Math. Research Notices, 25 (2005), 1499-1518. |
[8] |
D. Ginzburg and D. Jiang, Periods and liftings: From $G_2$ to $C_3$, Israel Journal of Math., 123 (2001), 29-59.
doi: 10.1007/BF02784119. |
[9] |
D. Ginzburg and D. Jiang, Some conjectures on endoscopic representations in odd orthogonal groups,, Nagoya Mathematical Journal, ().
|
[10] |
D. Ginzburg, D. Jiang and D. Soudry, On CAP representations for even orthogonal groups I: A correspondence of unramified representations,, preprint., ().
|
[11] |
D. Ginzburg, D. Jiang and S. Rallis, On CAP automorphic representations of a split group of type $D_4$, J. Reine Angew. Math., 552 (2002), 179-211.
doi: 10.1515/crll.2002.090. |
[12] |
D. Ginzburg, D. Jiang and S. Rallis, Periods of residual representations of $SO(2l)$, Manuscripta Mathematica, 113 (2004), 319-358.
doi: 10.1007/s00229-003-0417-x. |
[13] |
D. Ginzburg, S. Rallis and D. Soudry, "The Descent Map from Automorphic Representations of $GL(n)$ to Classical Groups," World Scientific, 2011.
doi: 10.1142/9789814304993. |
[14] |
D. Ginzburg, S. Rallis and D. Soudry, Construction of CAP representations for symplectic groups using the descent method, in "Automorphic Representations, $L$ Functions and Applications: Progress and Prospects," de-Gruyter, (2005), 193-224. |
[15] |
H. Jacquet, On the residual spectrum of $GL(n)$, in "Lie Group Representations," II (College Park, Md., 1982/1983), Lecture Notes in Math., 1041, Springer, Berlin, (1984), 185-208. |
[16] |
I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math., 71 (1983), 309-338.
doi: 10.1007/BF01389101. |
show all references
References:
[1] |
R. Carter, "Finite Groups of Lie Type," J. Wiley & Sons, 1985. |
[2] |
J. Cogdell, H. Kim, I. Piatetski-Shapiro and F. Shahidi, Functoriality for the classical groups, 99 (2004), 163-233. |
[3] |
D. Collingwood and W. McGovern, "Nilpotent Orbits in Semisimple Lie Algebras," Van Nostrand Reinhold, 1991. |
[4] |
D. Ginzburg, "A construction of CAP representations for classical groups," International Math. Research Notices, 20 (2003), 1123-1140.
doi: 10.1155/S1073792803212228. |
[5] |
D. Ginzburg, Certain conjectures relating unipotent orbits to automorphic representations, Israel Journal of Mathematics, 151 (2006), 323-356.
doi: 10.1007/BF02777366. |
[6] |
D. Ginzburg, Endoscopic lifting in classical groups and poles of tensor $L$ functions, Duke Math. Journal, 141 (2008), 447-503.
doi: 10.1215/00127094-2007-002. |
[7] |
D. Ginzburg, On the lifting from $PGL_2\times PGL_2$ to $G_2$, International Math. Research Notices, 25 (2005), 1499-1518. |
[8] |
D. Ginzburg and D. Jiang, Periods and liftings: From $G_2$ to $C_3$, Israel Journal of Math., 123 (2001), 29-59.
doi: 10.1007/BF02784119. |
[9] |
D. Ginzburg and D. Jiang, Some conjectures on endoscopic representations in odd orthogonal groups,, Nagoya Mathematical Journal, ().
|
[10] |
D. Ginzburg, D. Jiang and D. Soudry, On CAP representations for even orthogonal groups I: A correspondence of unramified representations,, preprint., ().
|
[11] |
D. Ginzburg, D. Jiang and S. Rallis, On CAP automorphic representations of a split group of type $D_4$, J. Reine Angew. Math., 552 (2002), 179-211.
doi: 10.1515/crll.2002.090. |
[12] |
D. Ginzburg, D. Jiang and S. Rallis, Periods of residual representations of $SO(2l)$, Manuscripta Mathematica, 113 (2004), 319-358.
doi: 10.1007/s00229-003-0417-x. |
[13] |
D. Ginzburg, S. Rallis and D. Soudry, "The Descent Map from Automorphic Representations of $GL(n)$ to Classical Groups," World Scientific, 2011.
doi: 10.1142/9789814304993. |
[14] |
D. Ginzburg, S. Rallis and D. Soudry, Construction of CAP representations for symplectic groups using the descent method, in "Automorphic Representations, $L$ Functions and Applications: Progress and Prospects," de-Gruyter, (2005), 193-224. |
[15] |
H. Jacquet, On the residual spectrum of $GL(n)$, in "Lie Group Representations," II (College Park, Md., 1982/1983), Lecture Notes in Math., 1041, Springer, Berlin, (1984), 185-208. |
[16] |
I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math., 71 (1983), 309-338.
doi: 10.1007/BF01389101. |
[1] |
Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333 |
[2] |
Ana-Maria Acu, Madalina Dancs, Voichiţa Adriana Radu. Representations for the inverses of certain operators. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4097-4109. doi: 10.3934/cpaa.2020182 |
[3] |
Kai Cao, Xiongping Dai. Lifting the regionally proximal relation and characterizations of distal extensions. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2103-2174. doi: 10.3934/dcds.2021186 |
[4] |
Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems and Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031 |
[5] |
Yves Frederix, Giovanni Samaey, Christophe Vandekerckhove, Ting Li, Erik Nies, Dirk Roose. Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 855-874. doi: 10.3934/dcdsb.2009.11.855 |
[6] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036 |
[7] |
Bertuel Tangue Ndawa. Infinite lifting of an action of symplectomorphism group on the set of bi-Lagrangian structures. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022006 |
[8] |
David Kazhdan and Yakov Varshavsky. Endoscopic decomposition of characters of certain cuspidal representations. Electronic Research Announcements, 2004, 10: 11-20. |
[9] |
Artem Dudko, Rostislav Grigorchuk. On spectra of Koopman, groupoid and quasi-regular representations. Journal of Modern Dynamics, 2017, 11: 99-123. doi: 10.3934/jmd.2017005 |
[10] |
Peter Vandendriessche. LDPC codes associated with linear representations of geometries. Advances in Mathematics of Communications, 2010, 4 (3) : 405-417. doi: 10.3934/amc.2010.4.405 |
[11] |
Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795 |
[12] |
Uri Bader, Roman Muchnik. Boundary unitary representations-irreducibility and rigidity. Journal of Modern Dynamics, 2011, 5 (1) : 49-69. doi: 10.3934/jmd.2011.5.49 |
[13] |
Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure and Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229 |
[14] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5567-5579. doi: 10.3934/dcdsb.2020367 |
[15] |
Diego Rapoport. Random representations of viscous fluids and the passive magnetic fields transported on them. Conference Publications, 2001, 2001 (Special) : 327-336. doi: 10.3934/proc.2001.2001.327 |
[16] |
Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112. |
[17] |
Ermal Feleqi, Franco Rampazzo. Integral representations for bracket-generating multi-flows. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4345-4366. doi: 10.3934/dcds.2015.35.4345 |
[18] |
Kanghui Guo, Demetrio Labate. Optimally sparse 3D approximations using shearlet representations. Electronic Research Announcements, 2010, 17: 125-137. doi: 10.3934/era.2010.17.125 |
[19] |
Catarina Carvalho, Victor Nistor, Yu Qiao. Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras. Electronic Research Announcements, 2017, 24: 68-77. doi: 10.3934/era.2017.24.008 |
[20] |
Uri Bader, Jan Dymara. Boundary unitary representations—right-angled hyperbolic buildings. Journal of Modern Dynamics, 2016, 10: 413-437. doi: 10.3934/jmd.2016.10.413 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]