2012, 19: 33-40. doi: 10.3934/era.2012.19.33

On GIT quotients of Hilbert and Chow schemes of curves

1. 

Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy

2. 

Departamento de Matemática, Universidade de Coimbra, Largo D. Dinis, Apartado 3008, 3001 Coimbra, Portugal

3. 

Dipartimento di Matematica, Università Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy

Received  September 2011 Revised  January 2012 Published  February 2012

The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree $d$ and genus $g$ in the projective space of dimension $d-g$, whose full details will appear in [6]. In particular, we extend the previous results of L. Caporaso up to $d>4(2g-2)$ and we observe that this is sharp. In the range $2(2g-2) < d < \frac{7}{2} (2g-2)$, we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.
Citation: Gilberto Bini, Margarida Melo, Filippo Viviani. On GIT quotients of Hilbert and Chow schemes of curves. Electronic Research Announcements, 2012, 19: 33-40. doi: 10.3934/era.2012.19.33
References:
[1]

J. Alper, Adequate moduli spaces and geometrically reductive group schemes, preprint, arXiv:1005.2398.

[2]

J. Alper and D. Hyeon, GIT construction of log canonical models of $\barM_g$, preprint, arXiv:1109.2173.

[3]

J. Alper, D. Smyth and M. Fedorchuck, Finite Hilbert stability of (bi)canonical curves, preprint, arXiv:1109.4986.

[4]

J. Alper, D. Smyth and M. Fedorchuck, Finite Hilbert stability of canonical curves, II. The even-genus case, preprint, arXiv:1110.5960.

[5]

J. Alper, D. Smyth and F. van der Wick, Weakly proper moduli stacks of curves, preprint, arXiv:1012.0538.

[6]

G. Bini, M. Melo and F. Viviani, GIT for polarized curves, preprint, arXiv:1109.6908v2.

[7]

L. Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc., 7 (1994), 589-660. doi: 10.1090/S0894-0347-1994-1254134-8.

[8]

M. Fedorchuk and D. Jensen, Stability of 2nd Hilbert points of canonical curves, preprint, arXiv:1111.5339.

[9]

M. Fedorchuk and D. I. Smyth, Alternate compactifications of moduli space of curves, to appear in "Handbook of Moduli" (eds. G. Farkas and I. Morrison), arXiv:1012.0329.

[10]

F. Felici, GIT for curves of low degree, in progress.

[11]

D. Gieseker, "Lectures on Moduli of Curves," Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 69, Tata Institute of Fundamental Research, Bombay, 1982.

[12]

J. Harris and I. Morrison, "Moduli of Curves," Graduate Text in Mathematics, 187, Springer-Verlag, New York, 1998.

[13]

B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: First divisorial contraction, Trans. Amer. Math. Soc., 361 (2009), 4471-4489. doi: 10.1090/S0002-9947-09-04819-3.

[14]

B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: The first flip, preprint arXiv:0806.3444.

[15]

D. Hyeon and Y. Lee, Stability of tri-canonical curves of genus two, Math. Ann., 337 (2007), 479-488. doi: 10.1007/s00208-006-0046-2.

[16]

D. Hyeon and I. Morrison, Stability of tails and 4-canonical models, Math. Res. Lett., 17 (2010), 721-729.

[17]

J. Li and X. Wang, Hilbert-Mumford criterion for nodal curves, preprint, arXiv:1108.1727v1.

[18]

I. Morrison, GIT constructions of moduli spaces of stable curves and maps, in "Geometry of Riemann surfaces and their Moduli Spaces" (eds. L. Ji, et al.), Surveys in Differential Geometry 14, International Press, Somerville, MA, (2010), 315-369.

[19]

D. Mumford, "Lectures on Curves on an Algebraic Surface," Annals of Mathematics Studies, 59, Princeton University Press, Princeton, N.J., 1966.

[20]

D. Mumford, Stability of projective varieties, Enseignement Math. (2), 23 (1977), 39-110.

[21]

D. Schubert, A new compactification of the moduli space of curves, Compositio Math., 78 (1991), 297-313.

show all references

References:
[1]

J. Alper, Adequate moduli spaces and geometrically reductive group schemes, preprint, arXiv:1005.2398.

[2]

J. Alper and D. Hyeon, GIT construction of log canonical models of $\barM_g$, preprint, arXiv:1109.2173.

[3]

J. Alper, D. Smyth and M. Fedorchuck, Finite Hilbert stability of (bi)canonical curves, preprint, arXiv:1109.4986.

[4]

J. Alper, D. Smyth and M. Fedorchuck, Finite Hilbert stability of canonical curves, II. The even-genus case, preprint, arXiv:1110.5960.

[5]

J. Alper, D. Smyth and F. van der Wick, Weakly proper moduli stacks of curves, preprint, arXiv:1012.0538.

[6]

G. Bini, M. Melo and F. Viviani, GIT for polarized curves, preprint, arXiv:1109.6908v2.

[7]

L. Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc., 7 (1994), 589-660. doi: 10.1090/S0894-0347-1994-1254134-8.

[8]

M. Fedorchuk and D. Jensen, Stability of 2nd Hilbert points of canonical curves, preprint, arXiv:1111.5339.

[9]

M. Fedorchuk and D. I. Smyth, Alternate compactifications of moduli space of curves, to appear in "Handbook of Moduli" (eds. G. Farkas and I. Morrison), arXiv:1012.0329.

[10]

F. Felici, GIT for curves of low degree, in progress.

[11]

D. Gieseker, "Lectures on Moduli of Curves," Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 69, Tata Institute of Fundamental Research, Bombay, 1982.

[12]

J. Harris and I. Morrison, "Moduli of Curves," Graduate Text in Mathematics, 187, Springer-Verlag, New York, 1998.

[13]

B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: First divisorial contraction, Trans. Amer. Math. Soc., 361 (2009), 4471-4489. doi: 10.1090/S0002-9947-09-04819-3.

[14]

B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: The first flip, preprint arXiv:0806.3444.

[15]

D. Hyeon and Y. Lee, Stability of tri-canonical curves of genus two, Math. Ann., 337 (2007), 479-488. doi: 10.1007/s00208-006-0046-2.

[16]

D. Hyeon and I. Morrison, Stability of tails and 4-canonical models, Math. Res. Lett., 17 (2010), 721-729.

[17]

J. Li and X. Wang, Hilbert-Mumford criterion for nodal curves, preprint, arXiv:1108.1727v1.

[18]

I. Morrison, GIT constructions of moduli spaces of stable curves and maps, in "Geometry of Riemann surfaces and their Moduli Spaces" (eds. L. Ji, et al.), Surveys in Differential Geometry 14, International Press, Somerville, MA, (2010), 315-369.

[19]

D. Mumford, "Lectures on Curves on an Algebraic Surface," Annals of Mathematics Studies, 59, Princeton University Press, Princeton, N.J., 1966.

[20]

D. Mumford, Stability of projective varieties, Enseignement Math. (2), 23 (1977), 39-110.

[21]

D. Schubert, A new compactification of the moduli space of curves, Compositio Math., 78 (1991), 297-313.

[1]

Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641

[2]

Wenbin Chen, Wenqiang Feng, Yuan Liu, Cheng Wang, Steven M. Wise. A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 149-182. doi: 10.3934/dcdsb.2018090

[3]

Francisco R. Ruiz del Portal. Stable sets of planar homeomorphisms with translation pseudo-arcs. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2379-2390. doi: 10.3934/dcdss.2019149

[4]

Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555

[5]

Van M. Savage, Alexander B. Herman, Geoffrey B. West, Kevin Leu. Using fractal geometry and universal growth curves as diagnostics for comparing tumor vasculature and metabolic rate with healthy tissue and for predicting responses to drug therapies. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1077-1108. doi: 10.3934/dcdsb.2013.18.1077

[6]

Krzysztof Frączek, Ronggang Shi, Corinna Ulcigrai. Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions. Journal of Modern Dynamics, 2018, 12: 55-122. doi: 10.3934/jmd.2018004

[7]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

[8]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[9]

Carlos Munuera, Alonso Sepúlveda, Fernando Torres. Castle curves and codes. Advances in Mathematics of Communications, 2009, 3 (4) : 399-408. doi: 10.3934/amc.2009.3.399

[10]

Vladimir Georgiev, Eugene Stepanov. Metric cycles, curves and solenoids. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1443-1463. doi: 10.3934/dcds.2014.34.1443

[11]

Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1

[12]

Lawrence Ein, Wenbo Niu, Jinhyung Park. On blowup of secant varieties of curves. Electronic Research Archive, 2021, 29 (6) : 3649-3654. doi: 10.3934/era.2021055

[13]

Zeyu Xia, Xiaofeng Yang. A second order accuracy in time, Fourier pseudo-spectral numerical scheme for "Good" Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3749-3763. doi: 10.3934/dcdsb.2020089

[14]

Philip N. J. Eagle, Steven D. Galbraith, John B. Ong. Point compression for Koblitz elliptic curves. Advances in Mathematics of Communications, 2011, 5 (1) : 1-10. doi: 10.3934/amc.2011.5.1

[15]

Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207

[16]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems and Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[17]

M. J. Jacobson, R. Scheidler, A. Stein. Cryptographic protocols on real hyperelliptic curves. Advances in Mathematics of Communications, 2007, 1 (2) : 197-221. doi: 10.3934/amc.2007.1.197

[18]

Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2847-2860. doi: 10.3934/dcds.2014.34.2847

[19]

Michael Khanevsky. Non-autonomous curves on surfaces. Journal of Modern Dynamics, 2021, 17: 305-317. doi: 10.3934/jmd.2021010

[20]

Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]