-
Previous Article
Operator representations of logmodular algebras which admit $\gamma-$spectral $\rho-$dilations
- ERA-MS Home
- This Volume
-
Next Article
On GIT quotients of Hilbert and Chow schemes of curves
Boundaries, Weyl groups, and Superrigidity
1. | Mathematics Department, The Technion, 32000 Haifa, Israel |
2. | Mathematics, Statistics and Computer Science Department, University of Illinois at Chicago, Chicago, 851 S. Morgan St., Illinois, 60607, United States |
References:
[1] |
U. Bader and A. Furman, Superrigidity via Weyl groups: Hyperbolic-like targets, preprint. |
[2] |
U. Bader, A. Furman and A. Shaker, Superrigidity via Weyl groups: Actions on the circle, preprint. |
[3] |
U. Bader and Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., 163 (2006), 415-454.
doi: 10.1007/s00222-005-0469-5. |
[4] |
M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., 12 (2002), 219-280.
doi: 10.1007/s00039-002-8245-9. |
[5] |
M. Burger and S. Mozes, $CAT$(-$1$)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc., 9 (1996), 57-93.
doi: 10.1090/S0894-0347-96-00196-8. |
[6] |
M. Burger, S. Mozes and R. J. Zimmer, Linear representations and arithmeticity of lattices in products of trees, in "Essays in Geometric Group Theory," Ramanujan Math. Soc. Lect. Notes Ser., 9, Ramanujan Math. Soc., Mysore, (2009), 1-25. |
[7] |
H. Furstenberg, A note on Borel's density theorem, Proc. Amer. Math. Soc., 55 (1976), 209-212. |
[8] |
T. Gelander, A. Karlsson and G. A. Margulis, Superrigidity, generalized harmonic maps and uniformly convex spaces, Geom. Funct. Anal., 17 (2008), 1524-1550.
doi: 10.1007/s00039-007-0639-2. |
[9] |
V. A. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology, Geom. Funct. Anal., 13 (2003), 852-861.
doi: 10.1007/s00039-003-0433-8. |
[10] |
G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, in "Proceedings of the International Congress of Mathematicians" (Vancouver, B.C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que., (1975), 21-34 (Russian). |
[11] |
_____, Finiteness of quotient groups of discrete groups, Funkts. Anal. Prilozh., 13 (1979), 28-39. |
[12] |
_____, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. |
[13] |
N. Monod, Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc., 19 (2006), 781-814.
doi: 10.1090/S0894-0347-06-00525-X. |
[14] |
_____, "Continuous Bounded Cohomology of Locally Compact Groups," Lecture Notes in Mathematics, Vol. 1758, Springer-Verlag, Berlin, 2001.
doi: 10.1007/b80626. |
[15] |
_____, Arithmeticity vs. nonlinearity for irreducible lattices, Geom. Dedicata, 112 (2005), 225-237.
doi: 10.1007/s10711-004-6162-9. |
[16] | |
[17] |
Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, 27 (1978), 350-372.
doi: 10.1016/0022-1236(78)90013-7. |
[18] |
R. J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. (2), 112 (1980), 511-529.
doi: 10.2307/1971090. |
[19] |
_____, "Ergodic Theory and Semisimple Groups," Monographs in Mathematics, Vol. 81, Birkhäuser Verlag, Basel, 1984. |
show all references
References:
[1] |
U. Bader and A. Furman, Superrigidity via Weyl groups: Hyperbolic-like targets, preprint. |
[2] |
U. Bader, A. Furman and A. Shaker, Superrigidity via Weyl groups: Actions on the circle, preprint. |
[3] |
U. Bader and Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., 163 (2006), 415-454.
doi: 10.1007/s00222-005-0469-5. |
[4] |
M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., 12 (2002), 219-280.
doi: 10.1007/s00039-002-8245-9. |
[5] |
M. Burger and S. Mozes, $CAT$(-$1$)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc., 9 (1996), 57-93.
doi: 10.1090/S0894-0347-96-00196-8. |
[6] |
M. Burger, S. Mozes and R. J. Zimmer, Linear representations and arithmeticity of lattices in products of trees, in "Essays in Geometric Group Theory," Ramanujan Math. Soc. Lect. Notes Ser., 9, Ramanujan Math. Soc., Mysore, (2009), 1-25. |
[7] |
H. Furstenberg, A note on Borel's density theorem, Proc. Amer. Math. Soc., 55 (1976), 209-212. |
[8] |
T. Gelander, A. Karlsson and G. A. Margulis, Superrigidity, generalized harmonic maps and uniformly convex spaces, Geom. Funct. Anal., 17 (2008), 1524-1550.
doi: 10.1007/s00039-007-0639-2. |
[9] |
V. A. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology, Geom. Funct. Anal., 13 (2003), 852-861.
doi: 10.1007/s00039-003-0433-8. |
[10] |
G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, in "Proceedings of the International Congress of Mathematicians" (Vancouver, B.C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que., (1975), 21-34 (Russian). |
[11] |
_____, Finiteness of quotient groups of discrete groups, Funkts. Anal. Prilozh., 13 (1979), 28-39. |
[12] |
_____, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. |
[13] |
N. Monod, Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc., 19 (2006), 781-814.
doi: 10.1090/S0894-0347-06-00525-X. |
[14] |
_____, "Continuous Bounded Cohomology of Locally Compact Groups," Lecture Notes in Mathematics, Vol. 1758, Springer-Verlag, Berlin, 2001.
doi: 10.1007/b80626. |
[15] |
_____, Arithmeticity vs. nonlinearity for irreducible lattices, Geom. Dedicata, 112 (2005), 225-237.
doi: 10.1007/s10711-004-6162-9. |
[16] | |
[17] |
Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, 27 (1978), 350-372.
doi: 10.1016/0022-1236(78)90013-7. |
[18] |
R. J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. (2), 112 (1980), 511-529.
doi: 10.2307/1971090. |
[19] |
_____, "Ergodic Theory and Semisimple Groups," Monographs in Mathematics, Vol. 81, Birkhäuser Verlag, Basel, 1984. |
[1] |
Frédéric Naud, Anke Pohl, Louis Soares. Fractal Weyl bounds and Hecke triangle groups. Electronic Research Announcements, 2019, 26: 24-35. doi: 10.3934/era.2019.26.003 |
[2] |
Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25 |
[3] |
Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems and Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795 |
[4] |
Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939 |
[5] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[6] |
Vieri Benci, Donato Fortunato. Hylomorphic solitons on lattices. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 875-897. doi: 10.3934/dcds.2010.28.875 |
[7] |
Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568 |
[8] |
Hervé Le Dret, Annie Raoult. Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8 (2) : 541-572. doi: 10.3934/nhm.2013.8.541 |
[9] |
Dmitry Jakobson and Iosif Polterovich. Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. Electronic Research Announcements, 2005, 11: 71-77. |
[10] |
Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225 |
[11] |
Ismara Álvarez-Barrientos, Mijail Borges-Quintana, Miguel Angel Borges-Trenard, Daniel Panario. Computing Gröbner bases associated with lattices. Advances in Mathematics of Communications, 2016, 10 (4) : 851-860. doi: 10.3934/amc.2016045 |
[12] |
Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389 |
[13] |
Gerhard Keller, Carlangelo Liverani. Coupled map lattices without cluster expansion. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 325-335. doi: 10.3934/dcds.2004.11.325 |
[14] |
Yejuan Wang, Kuang Bai. Pullback attractors for a class of nonlinear lattices with delays. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1213-1230. doi: 10.3934/dcdsb.2015.20.1213 |
[15] |
Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135 |
[16] |
Robert L. Griess, Jr. and Ching Hung Lam. Rootless pairs of $EE_8$-lattices. Electronic Research Announcements, 2008, 15: 52-61. doi: 10.3934/era.2008.15.52 |
[17] |
Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006 |
[18] |
Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control and Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467 |
[19] |
Sergei V. Ivanov. On aspherical presentations of groups. Electronic Research Announcements, 1998, 4: 109-114. |
[20] |
Benjamin Weiss. Entropy and actions of sofic groups. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]