2012, 19: 49-57. doi: 10.3934/era.2012.19.49

Operator representations of logmodular algebras which admit $\gamma-$spectral $\rho-$dilations

1. 

Department of Mathematics, Politehnica University of Timişoara, Piaţa Victoriei No.2, Et. 2, 300006, Timişoara, Romania, Romania, Romania

Received  July 2011 Revised  April 2012 Published  May 2012

This paper deals with some semi-spectral representations of logmodular algebras. More exactly, we characterize such representations by the corresponding scalar semi-spectral measures. In the case of a logmodular algebra we obtain, for $0<\rho \leq 1,$ several results which generalize the corresponding results of Foiaş-Suciu [2] in the case $\rho =1.$
Citation: Adina Juratoni, Flavius Pater, Olivia Bundău. Operator representations of logmodular algebras which admit $\gamma-$spectral $\rho-$dilations. Electronic Research Announcements, 2012, 19: 49-57. doi: 10.3934/era.2012.19.49
References:
[1]

C. Foiaş and I. Suciu, Szegö-measures and spectral theory in Hilbert spaces,, Rev. Roum. Math. Pures and Appl., 11 (1966), 147.   Google Scholar

[2]

C. Foiaş and I. Suciu, On the operator representations of logmodular algebras,, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 16 (1968), 505.   Google Scholar

[3]

T. W. Gamelin, "Uniform Algebras,", Prentice-Hall, (1969).   Google Scholar

[4]

D. Gaşpar, Spectral $\rho -$dilation for the representations of function algebras,, Anal. Univ. Timişoara, 8 (1970), 153.   Google Scholar

[5]

D. Gaşpar, Contributions to the harmonic analysis of representations of function algebras (Romanian. English summary),, Stud. Cerc. Math., 24 (1972), 7.   Google Scholar

[6]

A. Juratoni, Some absolutely continuous representations of function algebras,, Surveys in Mathematics and its Applications, 1 (2006), 51.   Google Scholar

[7]

A. Juratoni and N. Suciu, $\rho -$ Semispectral representations and weakly similarity,, Analele Univ. de Vest, 45 (2007), 253.   Google Scholar

[8]

A. Juratoni and N. Suciu, Operator representations of function algebras and functional calculus,, Opuscula Mathematica, 31 (2011), 237.   Google Scholar

[9]

K. Nishizawa, On closed subalgebras between $A$ and $H^\infty$,, Tokyo J. Math., 3 (1980), 137.  doi: 10.3836/tjm/1270216087.  Google Scholar

[10]

V. Paulsen and M. Raghupathi, Representations of logmodular algebras,, preprint, ().   Google Scholar

[11]

I. Suciu, "Function Algebras,", Editura Academiej Republicii Socialiste România, (1975).   Google Scholar

show all references

References:
[1]

C. Foiaş and I. Suciu, Szegö-measures and spectral theory in Hilbert spaces,, Rev. Roum. Math. Pures and Appl., 11 (1966), 147.   Google Scholar

[2]

C. Foiaş and I. Suciu, On the operator representations of logmodular algebras,, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 16 (1968), 505.   Google Scholar

[3]

T. W. Gamelin, "Uniform Algebras,", Prentice-Hall, (1969).   Google Scholar

[4]

D. Gaşpar, Spectral $\rho -$dilation for the representations of function algebras,, Anal. Univ. Timişoara, 8 (1970), 153.   Google Scholar

[5]

D. Gaşpar, Contributions to the harmonic analysis of representations of function algebras (Romanian. English summary),, Stud. Cerc. Math., 24 (1972), 7.   Google Scholar

[6]

A. Juratoni, Some absolutely continuous representations of function algebras,, Surveys in Mathematics and its Applications, 1 (2006), 51.   Google Scholar

[7]

A. Juratoni and N. Suciu, $\rho -$ Semispectral representations and weakly similarity,, Analele Univ. de Vest, 45 (2007), 253.   Google Scholar

[8]

A. Juratoni and N. Suciu, Operator representations of function algebras and functional calculus,, Opuscula Mathematica, 31 (2011), 237.   Google Scholar

[9]

K. Nishizawa, On closed subalgebras between $A$ and $H^\infty$,, Tokyo J. Math., 3 (1980), 137.  doi: 10.3836/tjm/1270216087.  Google Scholar

[10]

V. Paulsen and M. Raghupathi, Representations of logmodular algebras,, preprint, ().   Google Scholar

[11]

I. Suciu, "Function Algebras,", Editura Academiej Republicii Socialiste România, (1975).   Google Scholar

[1]

Sébastien Gadat, Laurent Miclo. Spectral decompositions and $\mathbb{L}^2$-operator norms of toy hypocoercive semi-groups. Kinetic & Related Models, 2013, 6 (2) : 317-372. doi: 10.3934/krm.2013.6.317

[2]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[3]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[4]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[5]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[6]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[7]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[8]

Pedro A. S. Salomão. The Thurston operator for semi-finite combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 883-896. doi: 10.3934/dcds.2006.16.883

[9]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[10]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[11]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[12]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[13]

Gary Froyland, Simon Lloyd, Anthony Quas. A semi-invertible Oseledets Theorem with applications to transfer operator cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3835-3860. doi: 10.3934/dcds.2013.33.3835

[14]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[15]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[16]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[17]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[18]

Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas. Stability of boundary distance representation and reconstruction of Riemannian manifolds. Inverse Problems & Imaging, 2007, 1 (1) : 135-157. doi: 10.3934/ipi.2007.1.135

[19]

Wael Bahsoun, Christopher Bose, Anthony Quas. Deterministic representation for position dependent random maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 529-540. doi: 10.3934/dcds.2008.22.529

[20]

L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]