2012, 19: 77-85. doi: 10.3934/era.2012.19.77

Upper bounds for Steklov eigenvalues on surfaces

1. 

Laboratoire de Mathématiques (LAMA), Université de Savoie campus scientifique, 73376 Le Bourget-du-Lac, France

2. 

Département de Mathématiques et de Statistique, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada

Received  March 2012 Published  August 2012

We give explicit isoperimetric upper bounds for all Steklov eigenvalues of a compact orientable surface with boundary, in terms of the genus, the length of the boundary, and the number of boundary components. Our estimates generalize a recent result of Fraser-Schoen, as well as the classical inequalites obtained by Hersch-Payne-Schiffer, whose approach is used in the present paper.
Citation: Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77
References:
[1]

Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134. doi: 10.1007/BF02567028.  Google Scholar

[2]

Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7, Pitman, Boston, Mass., 1980.  Google Scholar

[3]

Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew. Math. Mech., 81 (2001), 69-71. doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#.  Google Scholar

[4]

Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue, J. Anal. Math., 83 (2001), 243-258. doi: 10.1007/BF02790263.  Google Scholar

[5]

Peter Buser, On the bipartition of graphs, Discrete Appl. Math., 9 (1984), 105-109.  Google Scholar

[6]

Alberto P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics" (Rio de Janeiro), Soc. Brasil. Mat., Rio de Janeiro, 1980.  Google Scholar

[7]

Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum, J. Funct. Anal., 261 (2011), 1384-1399. doi: 10.1016/j.jfa.2011.05.006.  Google Scholar

[8]

Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau, in "Séminaire de Théorie Spectrale et Géométrie, Année 1983-1984," VII.1-VII.15, Univ. Grenoble I, Saint-Martin-d'Héres, 1984.  Google Scholar

[9]

José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. Anal., 165 (1999), 101-116. doi: 10.1006/jfan.1999.3402.  Google Scholar

[10]

Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math., 226 (2011), 4011-4030. doi: 10.1016/j.aim.2010.11.007.  Google Scholar

[11]

Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv., 81 (2006), 945-964. doi: 10.4171/CMH/82.  Google Scholar

[12]

Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem, Funktsional. Anal. i Prilozhen., 44 (2010), 33-47.  Google Scholar

[13]

Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications, in "Surveys in Differential Geometry," Vol. IX, Surv. Differ. Geom., Int. Press, Somerville, MA, 2004.  Google Scholar

[14]

Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem, Journal of Functional Analysis, 261 (2011), 3419-3436. doi: 10.1016/j.jfa.2011.08.003.  Google Scholar

[15]

Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem, J. Convex Anal., 15 (2008), 581-592.  Google Scholar

[16]

Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues, Arch. Rational Mech. Anal., 57 (1975), 99-114.  Google Scholar

[17]

Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, preprint, arXiv:1103.2448, 2011. Google Scholar

[18]

Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom., 37 (1993), 73-93.  Google Scholar

[19]

Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221.  Google Scholar

[20]

Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116, Springer-Verlag, New York, 1996.  Google Scholar

[21]

Robert Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal., 3 (1954), 745-753.  Google Scholar

[22]

Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains, SIAM J. Appl. Math., 31 (1976), 385-391. doi: 10.1137/0131032.  Google Scholar

[23]

Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55-63.  Google Scholar

show all references

References:
[1]

Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134. doi: 10.1007/BF02567028.  Google Scholar

[2]

Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7, Pitman, Boston, Mass., 1980.  Google Scholar

[3]

Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew. Math. Mech., 81 (2001), 69-71. doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#.  Google Scholar

[4]

Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue, J. Anal. Math., 83 (2001), 243-258. doi: 10.1007/BF02790263.  Google Scholar

[5]

Peter Buser, On the bipartition of graphs, Discrete Appl. Math., 9 (1984), 105-109.  Google Scholar

[6]

Alberto P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics" (Rio de Janeiro), Soc. Brasil. Mat., Rio de Janeiro, 1980.  Google Scholar

[7]

Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum, J. Funct. Anal., 261 (2011), 1384-1399. doi: 10.1016/j.jfa.2011.05.006.  Google Scholar

[8]

Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau, in "Séminaire de Théorie Spectrale et Géométrie, Année 1983-1984," VII.1-VII.15, Univ. Grenoble I, Saint-Martin-d'Héres, 1984.  Google Scholar

[9]

José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. Anal., 165 (1999), 101-116. doi: 10.1006/jfan.1999.3402.  Google Scholar

[10]

Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math., 226 (2011), 4011-4030. doi: 10.1016/j.aim.2010.11.007.  Google Scholar

[11]

Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv., 81 (2006), 945-964. doi: 10.4171/CMH/82.  Google Scholar

[12]

Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem, Funktsional. Anal. i Prilozhen., 44 (2010), 33-47.  Google Scholar

[13]

Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications, in "Surveys in Differential Geometry," Vol. IX, Surv. Differ. Geom., Int. Press, Somerville, MA, 2004.  Google Scholar

[14]

Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem, Journal of Functional Analysis, 261 (2011), 3419-3436. doi: 10.1016/j.jfa.2011.08.003.  Google Scholar

[15]

Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem, J. Convex Anal., 15 (2008), 581-592.  Google Scholar

[16]

Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues, Arch. Rational Mech. Anal., 57 (1975), 99-114.  Google Scholar

[17]

Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, preprint, arXiv:1103.2448, 2011. Google Scholar

[18]

Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom., 37 (1993), 73-93.  Google Scholar

[19]

Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221.  Google Scholar

[20]

Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116, Springer-Verlag, New York, 1996.  Google Scholar

[21]

Robert Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal., 3 (1954), 745-753.  Google Scholar

[22]

Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains, SIAM J. Appl. Math., 31 (1976), 385-391. doi: 10.1137/0131032.  Google Scholar

[23]

Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55-63.  Google Scholar

[1]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure &amp; Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[2]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure &amp; Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[3]

Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025

[4]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[5]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[6]

Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems & Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029

[7]

Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure &amp; Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63

[8]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[9]

Yuhua Sun. On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds. Communications on Pure &amp; Applied Analysis, 2015, 14 (5) : 1743-1757. doi: 10.3934/cpaa.2015.14.1743

[10]

Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3035-3045. doi: 10.3934/jimo.2019092

[11]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure &amp; Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[12]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure &amp; Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[13]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure &amp; Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[14]

Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016

[15]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[16]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[17]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure &amp; Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[18]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[19]

Jean-Michel Rakotoson. Generalized eigenvalue problem for totally discontinuous operators. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 343-373. doi: 10.3934/dcds.2010.28.343

[20]

Nikolaos Roidos, Yuanzhen Shao. Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021026

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]