-
Previous Article
The pentagram map in higher dimensions and KdV flows
- ERA-MS Home
- This Volume
-
Next Article
Integration of exact Courant algebroids
Upper bounds for Steklov eigenvalues on surfaces
1. | Laboratoire de Mathématiques (LAMA), Université de Savoie campus scientifique, 73376 Le Bourget-du-Lac, France |
2. | Département de Mathématiques et de Statistique, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada |
References:
[1] |
Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions,, Comment. Math. Helv., 24 (1950), 100.
doi: 10.1007/BF02567028. |
[2] |
Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7,, Pitman, (1980).
|
[3] |
Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem,, Z. Angew. Math. Mech., 81 (2001), 69.
doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#. |
[4] |
Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue,, J. Anal. Math., 83 (2001), 243.
doi: 10.1007/BF02790263. |
[5] |
Peter Buser, On the bipartition of graphs,, Discrete Appl. Math., 9 (1984), 105.
|
[6] |
Alberto P. Calderón, On an inverse boundary value problem,, in, (1980).
|
[7] |
Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum,, J. Funct. Anal., 261 (2011), 1384.
doi: 10.1016/j.jfa.2011.05.006. |
[8] |
Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau,, in, (1984), 1983.
|
[9] |
José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue,, J. Funct. Anal., 165 (1999), 101.
doi: 10.1006/jfan.1999.3402. |
[10] |
Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces,, Adv. Math., 226 (2011), 4011.
doi: 10.1016/j.aim.2010.11.007. |
[11] |
Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes,, Comment. Math. Helv., 81 (2006), 945.
doi: 10.4171/CMH/82. |
[12] |
Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem,, Funktsional. Anal. i Prilozhen., 44 (2010), 33.
|
[13] |
Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications,, in, (2004).
|
[14] |
Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem,, Journal of Functional Analysis, 261 (2011), 3419.
doi: 10.1016/j.jfa.2011.08.003. |
[15] |
Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem,, J. Convex Anal., 15 (2008), 581.
|
[16] |
Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues,, Arch. Rational Mech. Anal., 57 (1975), 99.
|
[17] |
Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces,, preprint, (2011). Google Scholar |
[18] |
Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics,, J. Differential Geom., 37 (1993), 73.
|
[19] |
Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207.
|
[20] |
Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116,, Springer-Verlag, (1996).
|
[21] |
Robert Weinstock, Inequalities for a classical eigenvalue problem,, J. Rational Mech. Anal., 3 (1954), 745.
|
[22] |
Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains,, SIAM J. Appl. Math., 31 (1976), 385.
doi: 10.1137/0131032. |
[23] |
Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55.
|
show all references
References:
[1] |
Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions,, Comment. Math. Helv., 24 (1950), 100.
doi: 10.1007/BF02567028. |
[2] |
Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7,, Pitman, (1980).
|
[3] |
Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem,, Z. Angew. Math. Mech., 81 (2001), 69.
doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#. |
[4] |
Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue,, J. Anal. Math., 83 (2001), 243.
doi: 10.1007/BF02790263. |
[5] |
Peter Buser, On the bipartition of graphs,, Discrete Appl. Math., 9 (1984), 105.
|
[6] |
Alberto P. Calderón, On an inverse boundary value problem,, in, (1980).
|
[7] |
Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum,, J. Funct. Anal., 261 (2011), 1384.
doi: 10.1016/j.jfa.2011.05.006. |
[8] |
Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau,, in, (1984), 1983.
|
[9] |
José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue,, J. Funct. Anal., 165 (1999), 101.
doi: 10.1006/jfan.1999.3402. |
[10] |
Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces,, Adv. Math., 226 (2011), 4011.
doi: 10.1016/j.aim.2010.11.007. |
[11] |
Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes,, Comment. Math. Helv., 81 (2006), 945.
doi: 10.4171/CMH/82. |
[12] |
Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem,, Funktsional. Anal. i Prilozhen., 44 (2010), 33.
|
[13] |
Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications,, in, (2004).
|
[14] |
Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem,, Journal of Functional Analysis, 261 (2011), 3419.
doi: 10.1016/j.jfa.2011.08.003. |
[15] |
Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem,, J. Convex Anal., 15 (2008), 581.
|
[16] |
Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues,, Arch. Rational Mech. Anal., 57 (1975), 99.
|
[17] |
Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces,, preprint, (2011). Google Scholar |
[18] |
Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics,, J. Differential Geom., 37 (1993), 73.
|
[19] |
Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207.
|
[20] |
Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116,, Springer-Verlag, (1996).
|
[21] |
Robert Weinstock, Inequalities for a classical eigenvalue problem,, J. Rational Mech. Anal., 3 (1954), 745.
|
[22] |
Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains,, SIAM J. Appl. Math., 31 (1976), 385.
doi: 10.1137/0131032. |
[23] |
Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55.
|
[1] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[2] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[3] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[4] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[5] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[6] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[7] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[8] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[9] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[10] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[11] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[12] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[13] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[14] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[15] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[16] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[17] |
Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274 |
[18] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[19] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[20] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]