2012, 19: 86-96. doi: 10.3934/era.2012.19.86

The pentagram map in higher dimensions and KdV flows

1. 

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA and Department of Mathematics,, University of Toronto, Toronto, ON M5S 2E4, Canada

2. 

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada

Published  September 2012

We extend the definition of the pentagram map from 2D to higher dimensions and describe its integrability properties for both closed and twisted polygons by presenting its Lax form. The corresponding continuous limit of the pentagram map in dimension $d$ is shown to be the $(2,d+1)$-equation of the KdV hierarchy, generalizing the Boussinesq equation in 2D.
Citation: Boris Khesin, Fedor Soloviev. The pentagram map in higher dimensions and KdV flows. Electronic Research Announcements, 2012, 19: 86-96. doi: 10.3934/era.2012.19.86
References:
[1]

M. Gekhtman, M. Shapiro, S. Tabachnikov and A. Vainshtein, Higher pentagram maps, weighted directed networks, and cluster dynamics, Electron. Res. Announc. Math. Sci., 19 (2012), 1-17; arXiv:1110.0472.

[2]

B. Khesin and F. Soloviev, Integrability of higher pentagram maps, (2012); arXiv:1204.0756.

[3]

I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and N=2 supersymmetric gauge theories, J. Diff. Geom., 45 (1997), 349-389.

[4]

I. M. Krichever and D. H. Phong, Symplectic forms in the theory of solitons, in "Surveys in Differential Geometry: Integral Systems [Integrable Systems]," Surv. Diff. Geom., Vol. IV, Int. Press, Boston, MA, (1998), 239-313.

[5]

G. Marí Beffa, On generalizations of the pentagram map: Discretizations of AGD flows, (2011); arXiv:1103.5047.

[6]

V. Ovsienko, R. Schwartz and S. Tabachnikov, The pentagram map: A discrete integrable system, Comm. Math. Phys., 299 (2010), 409-446; arXiv:0810.5605. doi: 10.1007/s00220-010-1075-y.

[7]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons, (2011); arXiv:1107.3633.

[8]

R. Schwartz, The pentagram map, Experiment. Math., 1 (1992), 71-81.

[9]

F. Soloviev, Integrability of the pentagram map, submitted to Duke Mathematical Journal, (2011); arXiv:1106.3950.

show all references

References:
[1]

M. Gekhtman, M. Shapiro, S. Tabachnikov and A. Vainshtein, Higher pentagram maps, weighted directed networks, and cluster dynamics, Electron. Res. Announc. Math. Sci., 19 (2012), 1-17; arXiv:1110.0472.

[2]

B. Khesin and F. Soloviev, Integrability of higher pentagram maps, (2012); arXiv:1204.0756.

[3]

I. M. Krichever and D. H. Phong, On the integrable geometry of soliton equations and N=2 supersymmetric gauge theories, J. Diff. Geom., 45 (1997), 349-389.

[4]

I. M. Krichever and D. H. Phong, Symplectic forms in the theory of solitons, in "Surveys in Differential Geometry: Integral Systems [Integrable Systems]," Surv. Diff. Geom., Vol. IV, Int. Press, Boston, MA, (1998), 239-313.

[5]

G. Marí Beffa, On generalizations of the pentagram map: Discretizations of AGD flows, (2011); arXiv:1103.5047.

[6]

V. Ovsienko, R. Schwartz and S. Tabachnikov, The pentagram map: A discrete integrable system, Comm. Math. Phys., 299 (2010), 409-446; arXiv:0810.5605. doi: 10.1007/s00220-010-1075-y.

[7]

V. Ovsienko, R. Schwartz and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons, (2011); arXiv:1107.3633.

[8]

R. Schwartz, The pentagram map, Experiment. Math., 1 (1992), 71-81.

[9]

F. Soloviev, Integrability of the pentagram map, submitted to Duke Mathematical Journal, (2011); arXiv:1106.3950.

[1]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[2]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[3]

Vladimir S. Gerdjikov, Georgi Grahovski, Rossen Ivanov. On the integrability of KdV hierarchy with self-consistent sources. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1439-1452. doi: 10.3934/cpaa.2012.11.1439

[4]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[5]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1699-1719. doi: 10.3934/cpaa.2021037

[6]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[7]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

[8]

Alberto Maspero, Beat Schaad. One smoothing property of the scattering map of the KdV on $\mathbb{R}$. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1493-1537. doi: 10.3934/dcds.2016.36.1493

[9]

Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489

[10]

Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011

[11]

Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469

[12]

Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525

[13]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[14]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[15]

Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417

[16]

Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147

[17]

Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191

[18]

S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277

[19]

María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038

[20]

Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3155-3170. doi: 10.3934/dcds.2014.34.3155

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]