2013, 20: 1-11. doi: 10.3934/era.2013.20.1

$\alpha$-concave functions and a functional extension of mixed volumes

1. 

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978

2. 

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Received  November 2012 Revised  December 2012 Published  January 2013

Mixed volumes, which are the polarization of volume with respect to the Minkowski addition, are fundamental objects in convexity. In this note we announce the construction of mixed integrals, which are functional analogs of mixed volumes. We build a natural addition operation $\oplus$ on the class of quasi-concave functions, such that every class of $\alpha$-concave functions is closed under $\oplus$. We then define the mixed integrals, which are the polarization of the integral with respect to $\oplus$.
    We proceed to discuss the extension of various classic inequalities to the functional setting. For general quasi-concave functions, this is done by restating those results in the language of rearrangement inequalities. Restricting ourselves to $\alpha$-concave functions, we state a generalization of the Alexandrov inequalities in their more familiar form.
Citation: Vitali Milman, Liran Rotem. $\alpha$-concave functions and a functional extension of mixed volumes. Electronic Research Announcements, 2013, 20: 1-11. doi: 10.3934/era.2013.20.1
References:
[1]

Mordecai Avriel, r-convex functions,, Mathematical Programming, 2 (1972), 309.   Google Scholar

[2]

Sergey Bobkov, Convex bodies and norms associated to convex measures,, Probability Theory and Related Fields, 147 (2009), 303.  doi: 10.1007/s00440-009-0209-7.  Google Scholar

[3]

Sergey Bobkov, Andrea Colesanti and Ilaria Fragalà, Quermassintegrals of quasi-concave functions and generalized Prékopa-Leindler inequalities,, (2012), (2012).   Google Scholar

[4]

Christer Borell, Convex measures on locally convex spaces,, Arkiv för Matematik, 12 (1974), 239.   Google Scholar

[5]

Christer Borell, Convex set functions in d-space,, Periodica Mathematica Hungarica, 6 (1975), 111.   Google Scholar

[6]

Herm J. Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, Journal of Functional Analysis, 22 (1976), 366.   Google Scholar

[7]

Bo'az Klartag and Vitali Milman, Geometry of log-concave functions and measures,, Geometriae Dedicata, 112 (2005), 169.  doi: 10.1007/s10711-004-2462-3.  Google Scholar

[8]

Vitali Milman and Liran Rotem, Mixed integrals and related inequalities,, Journal of Functional Analysis, 264 (2013), 570.  doi: 10.1016/j.jfa.2012.10.019.  Google Scholar

[9]

Liran Rotem, Support functions and mean width for $\alpha$-concave functions,, preprint, (2012).  doi: 10.1016/j.bulsci.2012.03.003.  Google Scholar

[10]

Rolf Schneider, "Convex Bodies: The Brunn-Minkowski Theory,", Encyclopedia of Mathematics and its Applications, 44 (1993).  doi: 10.1017/CBO9780511526282.  Google Scholar

show all references

References:
[1]

Mordecai Avriel, r-convex functions,, Mathematical Programming, 2 (1972), 309.   Google Scholar

[2]

Sergey Bobkov, Convex bodies and norms associated to convex measures,, Probability Theory and Related Fields, 147 (2009), 303.  doi: 10.1007/s00440-009-0209-7.  Google Scholar

[3]

Sergey Bobkov, Andrea Colesanti and Ilaria Fragalà, Quermassintegrals of quasi-concave functions and generalized Prékopa-Leindler inequalities,, (2012), (2012).   Google Scholar

[4]

Christer Borell, Convex measures on locally convex spaces,, Arkiv för Matematik, 12 (1974), 239.   Google Scholar

[5]

Christer Borell, Convex set functions in d-space,, Periodica Mathematica Hungarica, 6 (1975), 111.   Google Scholar

[6]

Herm J. Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, Journal of Functional Analysis, 22 (1976), 366.   Google Scholar

[7]

Bo'az Klartag and Vitali Milman, Geometry of log-concave functions and measures,, Geometriae Dedicata, 112 (2005), 169.  doi: 10.1007/s10711-004-2462-3.  Google Scholar

[8]

Vitali Milman and Liran Rotem, Mixed integrals and related inequalities,, Journal of Functional Analysis, 264 (2013), 570.  doi: 10.1016/j.jfa.2012.10.019.  Google Scholar

[9]

Liran Rotem, Support functions and mean width for $\alpha$-concave functions,, preprint, (2012).  doi: 10.1016/j.bulsci.2012.03.003.  Google Scholar

[10]

Rolf Schneider, "Convex Bodies: The Brunn-Minkowski Theory,", Encyclopedia of Mathematics and its Applications, 44 (1993).  doi: 10.1017/CBO9780511526282.  Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[3]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[4]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[6]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[10]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[11]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021009

[12]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[13]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[14]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[15]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[16]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[17]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[18]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]