\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characteristic classes of singular toric varieties

Abstract / Introduction Related Papers Cited by
  • We introduce a new approach for the computation of characteristic classes of singular toric varieties and, as an application, we obtain generalized Pick-type formulae for lattice polytopes. Many of our results (e.g., lattice point counting formulae) hold even more generally, for closed algebraic torus-invariant subspaces of toric varieties. In the simplicial case, by combining this new computation method with the Lefschetz-Riemann-Roch theorem, we give new proofs of several characteristic class formulae originally obtained by Cappell and Shaneson in the early 1990s.
    Mathematics Subject Classification: 14M25, 52B20, 14C17, 14C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Aluffi, Classes de Chern pour variétés singulières, revisitées, C. R. Math. Acad. Sci. Paris, 342 (2006), 405-410.doi: 10.1016/j.crma.2006.01.002.

    [2]

    A. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-97), Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999, 91-147.

    [3]

    P. Baum, W. Fulton and R. MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math., 45 (1975), 101-145.

    [4]

    G. Barthel, J.-P. Brasselet and K.-H. Fieseler, Classes de Chern des variétés toriques singulières, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 187-192.

    [5]

    J.-P. Brasselet, J. Schürmann and S. Yokura, Hirzebruch classes and motivic Chern classes of singular spaces, J. Topol. Anal., 2 (2010), 1-55.doi: 10.1142/S1793525310000239.

    [6]

    M. Brion and M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math., 482 (1997), 67-92.

    [7]

    S. E. Cappell, L. Maxim, J. Schürmann and J. L. Shaneson, Equivariant characteristic classes of complex algebraic varieties, Comm. Pure Appl. Math., 65 (2012), 1722-1769.doi: 10.1002/cpa.21427.

    [8]

    S. E. Cappell and J. L. Shaneson, Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc. (N.S.), 30 (1994), 62-69.doi: 10.1090/S0273-0979-1994-00436-7.

    [9]

    S. E. Cappell and J. L. Shaneson, Euler-MacLaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 885-890.

    [10]

    D. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom., 4 (1995), 17-50.

    [11]

    D. Cox, J. Little and H. Schenck, Toric Varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011.

    [12]

    V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys, 33 (1978), 97-154.doi: 10.1070/RM1978v033n02ABEH002305.

    [13]

    D. Edidin and W. Graham, Riemann-Roch for quotients and Todd classes of simplicial toric varieties, Comm. Algebra, 31 (2003), 3735-3752.doi: 10.1081/AGB-120022440.

    [14]

    K. E. Feldman, Miraculous cancellation and Pick's theorem, in Toric Topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 71-86.doi: 10.1090/conm/460/09011.

    [15]

    W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993.

    [16]

    St. Garoufalidis and J. E. Pommersheim, Values of zeta functions at negative integers, Dedekind sums and toric geometry, J. Amer. Math. Soc., 14 (2001), 1-23.doi: 10.1090/S0894-0347-00-00352-0.

    [17]

    I. Gessel, Generating functions and generalized Dedekind sums, Electron. J. Combin., 4 (1997), 17 pp.

    [18]

    M.-N. Ishida, Torus embeddings and de Rham complexes, in Commutative Algebra and Combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, (1987), 111-145.

    [19]

    E. Materov, The Bott formula for toric varieties, Mosc. Math. J., 2 (2002), 161-182, 200.

    [20]

    L. Maxim and J. Schürmann, Characteristic classes of singular toric varieties, arXiv:1303.4454.

    [21]

    B. Moonen, Das Lefschetz-Riemann-Roch-Theorem für Singuläre Varietäten, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn. Bonner Mathematische Schriften, 106, Universität Bonn, Mathematisches Institut, Bonn, 1978.

    [22]

    N. C. Leung and V. Reiner, The signature of a toric variety, Duke Math. J., 111 (2002), 253-286.doi: 10.1215/S0012-7094-02-11123-5.

    [23]

    T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15, Springer-Verlag, Berlin, 1988.

    [24]

    J. E. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann., 295 (1993), 1-24.doi: 10.1007/BF01444874.

    [25]

    J. E. Pommersheim, Products of cycles and the Todd class of a toric variety, J. Amer. Math. Soc., 9 (1996), 813-826.doi: 10.1090/S0894-0347-96-00209-3.

    [26]

    J. Shaneson, Characteristic classes, lattice points and Euler-MacLaurin formulae, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 612-624.

    [27]

    D. Zagier, Equivariant Pontrjagin Classes and Applications to Orbit Spaces. Applications of the G-Signature Theorem to Transformation Groups, Symmetric Products and Number Theory, Lecture Notes in Mathematics, Vol. 290, Springer-Verlag, Berlin-New York, 1972.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return