\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The gap between near commutativity and almost commutativity in symplectic category

Abstract Related Papers Cited by
  • On any closed symplectic manifold of dimension greater than $ 2 $, we construct a pair of smooth functions, such that on the one hand, the uniform norm of their Poisson bracket equals to $ 1 $, but on the other hand, this pair cannot be reasonably approximated (in the uniform norm) by a pair of Poisson commuting smooth functions. This comes in contrast with the dimension $ 2 $ case, where by a partial case of a result of Zapolsky [13], an opposite statement holds.
    Mathematics Subject Classification: Primary: 53D99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Buhovsky, The $2/3$-convergence rate for the Poisson bracket, Geom. and Funct. Analysis, 19 (2010), 1620-1649.doi: 10.1007/s00039-010-0045-z.

    [2]

    L. Buhovsky, M. Entov and L. Polterovich, Poisson brackets and symplectic invariants, Selecta Mathematica, 18 (2012), 89-157.doi: 10.1007/s00029-011-0068-9.

    [3]

    F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.doi: 10.1215/00127094-2008-036.

    [4]

    M. Entov and L. Polterovich, Quasi-states and symplectic intersections, Comm. Math. Helv., 81 (2006), 75-99.doi: 10.4171/CMH/43.

    [5]

    M. Entov and L. Polterovich, $C^0$-rigidity of Poisson brackets, in "Proceedings of the Joint Summer Research Conference on Symplectic Topology and Measure-Preserving Dynamical Systems" (eds. A. Fathi, Y.-G. Oh and C. Viterbo), Contemporary Mathematics, 512, AMS, Providence, RI, (2010), 25-32.doi: 10.1090/conm/512.

    [6]

    M. Entov and L. Polterovich, $C^0$-rigidity of the double Poisson bracket, Int. Math. Res. Notices, (2009), 1134-1158.

    [7]

    M. Entov, L. Polterovich and D. Rosen, Poisson brackets, quasi-states and symplectic integrators, Discrete and Continuous Dynamical Systems, 28 (2010), 1455-1468.doi: 10.3934/dcds.2010.28.1455.

    [8]

    M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure and Applied Math. Quarterly, 3 (2007), 1037-1055.

    [9]

    M. B. Hastings, Making almost commuting matrices commute, Comm. Math. Phys., 291 (2009), 321-345.doi: 10.1007/s00220-009-0877-2.

    [10]

    C. Pearcy and A. Shields, Almost commuting matrices, J. Funct. Anal., 33 (1979), 332-338.doi: 10.1016/0022-1236(79)90071-5.

    [11]

    L. Polterovich, Symplectic geometry of quantum noise, arXiv:1206.3707, (2012).

    [12]

    F. Zapolsky, Quasi-states and the Poisson bracket on surfaces, J. Mod. Dyn., 1 (2007), 465-475.doi: 10.3934/jmd.2007.1.465.

    [13]

    F. Zapolsky, On almost Poisson commutativity in dimension two, Electron. Res. Announc. Math. Sci., 17 (2010), 155-160.doi: 10.3934/era.2010.17.155.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return