2013, 20: 97-102. doi: 10.3934/era.2013.20.97

Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants

1. 

0287 Frist Center, Princeton University, Princeton, NJ 08544, United States

2. 

Penn State University Mathematics Department, 206 McAllister Building, University Park, PA 16802, United States

Received  September 2013 Published  November 2013

We use the Hofer norm to show that all Hamiltonian diffeomorphisms with compact support in $\mathbb{R}^{2n}$ that displace an open connected set with a nonzero Hofer-Zehnder capacity move a point farther than a capacity-dependent constant. In $\mathbb{R}^2$, this result is extended to all compactly supported area-preserving homeomorphisms. Next, using the spectral norm, we show the result holds for Hamiltonian diffeomorphisms on closed surfaces. We then show that all area-preserving homeomorphisms of $S^2$ and $\mathbb{RP}^2$ that displace the closure of an open connected set of fixed area move a point farther than an area-dependent constant.
Citation: Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97
References:
[1]

S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().   Google Scholar

[2]

Comment. Math Helv., 68 (1993), 48-72. doi: 10.1007/BF02565809.  Google Scholar

[3]

Proc. Amer. Math. Soc., 10 (1959), 621-626.  Google Scholar

[4]

Invent. Math., 82 (1985), 307-347. doi: 10.1007/BF01388806.  Google Scholar

[5]

Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[6]

Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().   Google Scholar

[7]

S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().   Google Scholar

[8]

Duke Math. J., 130 (2005), 199-295.  Google Scholar

[9]

Comm. Contemp. Math., 12 (2010), 457-473. doi: 10.1142/S0219199710003889.  Google Scholar

[10]

J. Topol. Anal., 4 (2012), 481-498. doi: 10.1142/S1793525312500215.  Google Scholar

show all references

References:
[1]

S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().   Google Scholar

[2]

Comment. Math Helv., 68 (1993), 48-72. doi: 10.1007/BF02565809.  Google Scholar

[3]

Proc. Amer. Math. Soc., 10 (1959), 621-626.  Google Scholar

[4]

Invent. Math., 82 (1985), 307-347. doi: 10.1007/BF01388806.  Google Scholar

[5]

Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[6]

Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().   Google Scholar

[7]

S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().   Google Scholar

[8]

Duke Math. J., 130 (2005), 199-295.  Google Scholar

[9]

Comm. Contemp. Math., 12 (2010), 457-473. doi: 10.1142/S0219199710003889.  Google Scholar

[10]

J. Topol. Anal., 4 (2012), 481-498. doi: 10.1142/S1793525312500215.  Google Scholar

[1]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[2]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[3]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[4]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[5]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[6]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[7]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[8]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[9]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[10]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[11]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[12]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]