Citation: |
[1] |
P. Biran, M. Entov and L. Polterovich, Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math., 6 (2004), 793-802.doi: 10.1142/S0219199704001525. |
[2] |
M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., 2003 (2003), 1635-1676.doi: 10.1155/S1073792803210011. |
[3] |
M. Entov and L. Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv., 81 (2006), 75-99.doi: 10.4171/CMH/43. |
[4] |
M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compos. Math., 145 (2009), 773-826.doi: 10.1112/S0010437X0900400X. |
[5] |
M. Entov, L. Polterovich and P. Py, On continuity of quasimorphisms for symplectic maps, in Perspectives in Analysis, Geometry, and Topology, Progr. Math., 296, Birkhäuser/Springer, New York, 2012, 169-197.doi: 10.1007/978-0-8176-8277-4_8. |
[6] |
V. Humilière, Hofer's distance on diameters and the Maslov index, Int. Math. Res. Not. IMRN, 2012 (2012), 3415-3433.doi: 10.1093/imrn/rnr150. |
[7] |
M. Khanevsky, Hofer's metric on the space of diameters, J. Topol. Anal., 1 (2009), 407-416.doi: 10.1142/S1793525309000187. |
[8] |
R. Leclercq and F. Zapolsky, Spectral invariants for monotone Lagrangian submanifolds, in preparation. |
[9] |
Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in The breadth of symplectic and Poisson geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 525-570.doi: 10.1007/0-8176-4419-9_18. |
[10] |
M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419-461.doi: 10.2140/pjm.2000.193.419. |
[11] |
S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds, J. Topol. Anal., 4 (2012), 481-498.doi: 10.1142/S1793525312500215. |
[12] |
M. Usher, Submanifolds and the Hofer norm, to appear in J. Eur. Math. Soc., arXiv:1201.2926. |
[13] |
C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710.doi: 10.1007/BF01444643. |
[14] |
F. Zapolsky, On the Hofer geometry for weakly exact Lagrangian submanifolds, J. Symplectic Geom., 11 (2013), 475-488.doi: 10.4310/JSG.2013.v11.n3.a7. |