-
Previous Article
On existence of PI-exponents of codimension growth
- ERA-MS Home
- This Volume
-
Next Article
Pseudo-Anosov eigenfoliations on Panov planes
On Helly's theorem in geodesic spaces
1. | St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russian Federation |
References:
[1] |
S. A. Bogatyĭ, The topological Helly theorem, Russian, Fundam. Prikl. Mat., 8 (2002), 365-405. |
[2] |
M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-12494-9. |
[3] |
D. Burago and S. Ivanov, Polyhedral Finsler spaces with locally unique geodesics, Adv. Math., 247 (2013), 343-355.
doi: 10.1016/j.aim.2013.07.007. |
[4] |
H. Busemann, Spaces with non-positive curvature, Acta Math., 80 (1948), 259-310.
doi: 10.1007/BF02393651. |
[5] |
H. E. Debrunner, Helly type theorems derived from basic singular homology, Amer. Math. Monthly, 77 (1970), 375-380.
doi: 10.2307/2316144. |
[6] |
B. Farb, Group actions and Helly's theorem, Adv. Math., 222 (2009), 1574-1588.
doi: 10.1016/j.aim.2009.06.004. |
[7] |
E. Helly, Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten, Monatsh. Math. Phys., 37 (1930), 281-302.
doi: 10.1007/BF01696777. |
[8] |
R. N. Karasev, A topological central point theorem, Topology Appl., 159 (2012), 864-868.
doi: 10.1016/j.topol.2011.12.002. |
[9] |
B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z., 231 (1999), 409-456.
doi: 10.1007/PL00004738. |
[10] |
B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe, Fund. Math., 14 (1929), 132-137. |
[11] |
Tverberg's theorem in CAT(0) spaces, Misha, http://mathoverflow.net/users/21684,, MathOverflow, (): 2013.
|
[12] |
L. Montejano, A new topological Helly theorem, preprint, (2013). Available from: https://www.researchgate.net/publication/235626408. |
show all references
References:
[1] |
S. A. Bogatyĭ, The topological Helly theorem, Russian, Fundam. Prikl. Mat., 8 (2002), 365-405. |
[2] |
M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-12494-9. |
[3] |
D. Burago and S. Ivanov, Polyhedral Finsler spaces with locally unique geodesics, Adv. Math., 247 (2013), 343-355.
doi: 10.1016/j.aim.2013.07.007. |
[4] |
H. Busemann, Spaces with non-positive curvature, Acta Math., 80 (1948), 259-310.
doi: 10.1007/BF02393651. |
[5] |
H. E. Debrunner, Helly type theorems derived from basic singular homology, Amer. Math. Monthly, 77 (1970), 375-380.
doi: 10.2307/2316144. |
[6] |
B. Farb, Group actions and Helly's theorem, Adv. Math., 222 (2009), 1574-1588.
doi: 10.1016/j.aim.2009.06.004. |
[7] |
E. Helly, Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten, Monatsh. Math. Phys., 37 (1930), 281-302.
doi: 10.1007/BF01696777. |
[8] |
R. N. Karasev, A topological central point theorem, Topology Appl., 159 (2012), 864-868.
doi: 10.1016/j.topol.2011.12.002. |
[9] |
B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z., 231 (1999), 409-456.
doi: 10.1007/PL00004738. |
[10] |
B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe, Fund. Math., 14 (1929), 132-137. |
[11] |
Tverberg's theorem in CAT(0) spaces, Misha, http://mathoverflow.net/users/21684,, MathOverflow, (): 2013.
|
[12] |
L. Montejano, A new topological Helly theorem, preprint, (2013). Available from: https://www.researchgate.net/publication/235626408. |
[1] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[2] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[3] |
Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754 |
[4] |
Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072 |
[5] |
Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155 |
[6] |
Eric L. Grinberg, Haizhong Li. The Gauss-Bonnet-Grotemeyer Theorem in space forms. Inverse Problems and Imaging, 2010, 4 (4) : 655-664. doi: 10.3934/ipi.2010.4.655 |
[7] |
M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755 |
[8] |
Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511 |
[9] |
Raffaele Chiappinelli. Eigenvalues of homogeneous gradient mappings in Hilbert space and the Birkoff-Kellogg theorem. Conference Publications, 2007, 2007 (Special) : 260-268. doi: 10.3934/proc.2007.2007.260 |
[10] |
Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050 |
[11] |
Luciano Pandolfi. Riesz systems and moment method in the study of viscoelasticity in one space dimension. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1487-1510. doi: 10.3934/dcdsb.2010.14.1487 |
[12] |
Vahagn Nersesyan. Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Mathematical Control and Related Fields, 2021, 11 (2) : 237-251. doi: 10.3934/mcrf.2020035 |
[13] |
Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265 |
[14] |
Igor Kukavica. On Fourier parametrization of global attractors for equations in one space dimension. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 553-560. doi: 10.3934/dcds.2005.13.553 |
[15] |
Marco Di Francesco, Simone Fagioli, Massimiliano Daniele Rosini, Giovanni Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic and Related Models, 2017, 10 (1) : 215-237. doi: 10.3934/krm.2017009 |
[16] |
Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure and Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044 |
[17] |
Marcello D'Abbicco, Sandra Lucente. NLWE with a special scale invariant damping in odd space dimension. Conference Publications, 2015, 2015 (special) : 312-319. doi: 10.3934/proc.2015.0312 |
[18] |
Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167 |
[19] |
Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1561-1578. doi: 10.3934/dcds.2020331 |
[20] |
Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]