-
Previous Article
An arithmetic ball quotient surface whose Albanese variety is not of CM type
- ERA-MS Home
- This Volume
-
Next Article
Number of extremal subsets in Alexandrov spaces and rigidity
Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone
1. | Instytut Matematyki, Pedagogical University of Cracow, Podchorążych 2, PL-30-084 Kraków, Poland, Poland |
References:
[1] |
Th. Bauer, M. Funke and S. Neumann, Counting Zariski chambers on Del Pezzo surfaces, J. Algebra, 324 (2010), 92-101.
doi: 10.1016/j.jalgebra.2010.02.037. |
[2] |
Th. Bauer, A. Küronya and T. Szemberg, Zariski chambers, volumes, and stable base loci, J. Reine Angew. Math., 576 (2004), 209-233.
doi: 10.1515/crll.2004.090. |
[3] |
K. Kaveh and A. Khovanskii, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2), 176 (2012), 925-978.
doi: 10.4007/annals.2012.176.2.5. |
[4] |
A. Küronya, V. Lozovanu and C. Maclean, Convex bodies appearing as Okounkov bodies of divisors, Adv. Math., 229 (2012), 2622-2639.
doi: 10.1016/j.aim.2012.01.013. |
[5] |
Yu. Manin, Cubic Forms. Algebra, Geometry, Arithmetic, North-Holland Mathematical Library, Vol. 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974. |
[6] |
M. Mustaţă and R. Lazarsfeld, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 783-835. |
[7] |
P. Łuszcz-Świdecka, On Minkowski Decompositions of Okounkov bodies on a Del Pezzo surface, Ann. Univ. Paedagog. Crac. Stud. Math., 10 (2011), 105-115. |
[8] |
P. Łuszcz-Świdecka and D. Schmitz, Minkowski decomposition of Okounkov bodies on surfaces, J. Algebra, 414 (2014), 159-174.
doi: 10.1016/j.jalgebra.2014.05.024. |
[9] |
M. Nakamaye, Stable base loci of linear series, Math. Ann., 318 (2000), 837-847.
doi: 10.1007/s002080000149. |
[10] |
P. Pokora, D. Schmitz and S. Urbinati, Minkowski decomposition and generators of the moving cone for toric varieties, arXiv:1310.8505. |
show all references
References:
[1] |
Th. Bauer, M. Funke and S. Neumann, Counting Zariski chambers on Del Pezzo surfaces, J. Algebra, 324 (2010), 92-101.
doi: 10.1016/j.jalgebra.2010.02.037. |
[2] |
Th. Bauer, A. Küronya and T. Szemberg, Zariski chambers, volumes, and stable base loci, J. Reine Angew. Math., 576 (2004), 209-233.
doi: 10.1515/crll.2004.090. |
[3] |
K. Kaveh and A. Khovanskii, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2), 176 (2012), 925-978.
doi: 10.4007/annals.2012.176.2.5. |
[4] |
A. Küronya, V. Lozovanu and C. Maclean, Convex bodies appearing as Okounkov bodies of divisors, Adv. Math., 229 (2012), 2622-2639.
doi: 10.1016/j.aim.2012.01.013. |
[5] |
Yu. Manin, Cubic Forms. Algebra, Geometry, Arithmetic, North-Holland Mathematical Library, Vol. 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974. |
[6] |
M. Mustaţă and R. Lazarsfeld, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 783-835. |
[7] |
P. Łuszcz-Świdecka, On Minkowski Decompositions of Okounkov bodies on a Del Pezzo surface, Ann. Univ. Paedagog. Crac. Stud. Math., 10 (2011), 105-115. |
[8] |
P. Łuszcz-Świdecka and D. Schmitz, Minkowski decomposition of Okounkov bodies on surfaces, J. Algebra, 414 (2014), 159-174.
doi: 10.1016/j.jalgebra.2014.05.024. |
[9] |
M. Nakamaye, Stable base loci of linear series, Math. Ann., 318 (2000), 837-847.
doi: 10.1007/s002080000149. |
[10] |
P. Pokora, D. Schmitz and S. Urbinati, Minkowski decomposition and generators of the moving cone for toric varieties, arXiv:1310.8505. |
[1] |
Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155 |
[2] |
Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure and Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569 |
[3] |
Patricia Gaitan, Hiroshi Isozaki, Olivier Poisson, Samuli Siltanen, Janne Tamminen. Probing for inclusions in heat conductive bodies. Inverse Problems and Imaging, 2012, 6 (3) : 423-446. doi: 10.3934/ipi.2012.6.423 |
[4] |
Giovanni Panti. Billiards on pythagorean triples and their Minkowski functions. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4341-4378. doi: 10.3934/dcds.2020183 |
[5] |
Meiyue Jiang, Chu Wang. The Orlicz-Minkowski problem for polytopes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1917-1930. doi: 10.3934/dcdss.2021043 |
[6] |
Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439 |
[7] |
Sohana Jahan, Hou-Duo Qi. Regularized multidimensional scaling with radial basis functions. Journal of Industrial and Management Optimization, 2016, 12 (2) : 543-563. doi: 10.3934/jimo.2016.12.543 |
[8] |
Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675 |
[9] |
Alexander Plakhov, Vera Roshchina. Fractal bodies invisible in 2 and 3 directions. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1615-1631. doi: 10.3934/dcds.2013.33.1615 |
[10] |
Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223 |
[11] |
Liran Rotem. Banach limit in convexity and geometric means for convex bodies. Electronic Research Announcements, 2016, 23: 41-51. doi: 10.3934/era.2016.23.005 |
[12] |
Angelo Alberti, Claudio Vidal. Singularities in the gravitational attraction problem due to massive bodies. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 805-822. doi: 10.3934/dcds.2010.26.805 |
[13] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[14] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
[15] |
Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40 |
[16] |
Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 |
[17] |
Rolando Mosquera, Aziz Hamdouni, Abdallah El Hamidi, Cyrille Allery. POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1743-1759. doi: 10.3934/dcdss.2019115 |
[18] |
Najla Mohammed, Peter Giesl. Grid refinement in the construction of Lyapunov functions using radial basis functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2453-2476. doi: 10.3934/dcdsb.2015.20.2453 |
[19] |
Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365 |
[20] |
Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponential-type functions on a uniform grid by shifts of a basis function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2399-2416. doi: 10.3934/dcdss.2020403 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]