Advanced Search
Article Contents
Article Contents

An arithmetic ball quotient surface whose Albanese variety is not of CM type

Abstract Related Papers Cited by
  • An example is given of a compact quotient of the unit ball in $\mathbb{C}^2$ by an arithmetic group acting freely such that the Albanese variety is not of CM type. Such examples do not exist for congruence subgroups.
    Mathematics Subject Classification: 11F75 (14J29).


    \begin{equation} \\ \end{equation}
  • [1]

    T. Chinburg and M. Stover, Arizona winter school course lecture notes, 2012. Available from: http://swc.math.arizona.edu/aws/2012/index.html.


    D. Cox, Primes of the Form $x^2+ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.


    J. Cremona, Algorithms for Modular Elliptic Curves, Second edition, Cambridge University Press, Cambridge, 1997.


    F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005.


    N. Elkies, The Klein Quartic in Number Theory, in The Eightfold Way, Math. Sci. Res. Inst. Publ., 35, Cambridge Univ. Press, Cambridge, 1999, 51-101.


    R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.


    F. Hirzebruch, Arrangements of lines and algebraic surfaces, Arithmetic and Geometry, Vol. II, Progr. Math., 36, Birkhäuser, Boston, Mass., 1983, 113-140.


    M. Inoue, Some new surfaces of general type, Tokyo J. Math., 17 (1994), 295-319.doi: 10.3836/tjm/1270127954.


    M.-N. Ishida, The irregularities of Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$, Math. Ann., 262 (1983), 407-420.doi: 10.1007/BF01456018.


    S. Lang, Abelain Varieties, Interscience Tracts in Pure and Applied Mathematics. No. 7, Interscience Publishers, Inc., New York, 1959.


    R. Livné, On Certain Covers of the Universal Elliptic Curve, Ph.D. Thesis, Harvard University, 1981.


    Y. Miyoaka, The maximal number of quotients singularities on surfaces with given numerical invariants, Math. Ann., 268 (1984), 159-171.doi: 10.1007/BF01456083.


    K. Murty and D. Ramakrishnan, The Albanese of unitary Shimura varieties, in The Zeta Function of Picard Modular Surfaces (eds. R. Langlands and D. Ramakrishnan), Univ. Montréal, Montréal, 1992, 445-464.


    J. D. Rogawski, Analytic expression for the number of points mod $p$, in The Zeta Function of Picard Modular Surfaces (eds. R. Langlands and D. Ramakrishnan), Univ. Montréal, Montréal, 1992, 65-109.


    J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986.doi: 10.1007/978-1-4757-1920-8.


    J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-0851-8.


    R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall Series in Modern Analysis, Prentice Hall, Inc., Englewood Cliffs, NJ, 1973.


    T. Yamazaki and M. Yoshida, On Hirzebruch's examples of surfaces with $c_1^2=3c_2$, Math. Ann., 266 (1984), 421-431.doi: 10.1007/BF01458537.


    S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA, 74 (1977), 1798-1799.doi: 10.1073/pnas.74.5.1798.

  • 加载中

Article Metrics

HTML views() PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint