Citation: |
[1] |
V. Beloshapka, V. Ezhov and G. Schmalz, Canonical Cartan connection and holomorphic invariants on Engel CR manifolds, Russian J. Mathematical Physics, 14 (2007), 121-133.doi: 10.1134/S106192080702001X. |
[2] |
É. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1 (1932), 333-354. |
[3] |
J. Merker, Rationality in differential algebraic geometry, to appear in Proceedings of the Abel Symposium 2013, Springer Verlag, arXiv:1405.7625, 2013, 47 pp. |
[4] |
J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, I: General introduction, overview of results, and nonlinear computational aspects, http://arXiv.org, to appear. |
[5] |
J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, II: General classes $\sfI$, $\sf{II}$, $\sf{III}_{\sf{1}}$, $\sf{III}_{\sf{2}}$, $\sf{IV}_{\sf{1}}$, $\sf{IV}_{\sf{2}}$, arXiv:1311.5669, 95 pp. |
[6] |
J. Merker and M. Sabzevari, Explicit expression of Cartan's connections for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere, Cent. Eur. J. Math., 10 (2012), 1801-1835.doi: 10.2478/s11533-012-0052-4. |
[7] |
J. Merker and M. Sabzevari, Cartan equivalences for $5$-dimensional CR-manifolds in $\mathbbC^4$ belonging to general class III, arXiv:1401.4297, 172 pp. |
[8] |
P. J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511609565. |
[9] |
S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964. |