January  2014, 21: 153-166. doi: 10.3934/era.2014.21.153

Canonical Cartan connections on maximally minimal generic submanifolds $\mathbf{M^5 \subset \mathbb{C}^4}$

1. 

Department of Pure Mathematics, University of Shahrekord, 88186-34141 Shahrekord, Iran

2. 

Département de Mathématiques d'Orsay, Bâtiment 425, Faculté des Sciences, F-91405 Orsay Cedex, France, France

Received  May 2014 Revised  September 2014 Published  November 2014

On a real analytic $5$-dimensional CR-generic submanifold $M^5 \subset \mathbb{C}^4$ of codimension $3$ hence of CR dimension $1$, which enjoys the generically satisfied nondegeneracy condition \begin{align*} {\bf 5} &= \text{rank}_\mathbb{C} \big( T^{1,0}M+T^{0,1}M + \big[T^{1,0}M,\,T^{0,1}M\big] \,+ \\&\qquad + \big[T^{1,0}M,\,[T^{1,0}M,T^{0,1}M]\big] + \big[T^{0,1}M,\,[T^{1,0}M,T^{0,1}M]\big] \big), \end{align*} a canonical Cartan connection is constructed after reduction to a certain partially explicit $\{ e\}$-structure of the concerned local biholomorphic equivalence problem.
Citation: Masoud Sabzevari, Joël Merker, Samuel Pocchiola. Canonical Cartan connections on maximally minimal generic submanifolds $\mathbf{M^5 \subset \mathbb{C}^4}$. Electronic Research Announcements, 2014, 21: 153-166. doi: 10.3934/era.2014.21.153
References:
[1]

V. Beloshapka, V. Ezhov and G. Schmalz, Canonical Cartan connection and holomorphic invariants on Engel CR manifolds,, Russian J. Mathematical Physics, 14 (2007), 121. doi: 10.1134/S106192080702001X. Google Scholar

[2]

É. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1 (1932), 333. Google Scholar

[3]

J. Merker, Rationality in differential algebraic geometry,, to appear in Proceedings of the Abel Symposium 2013, (2013). Google Scholar

[4]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, I: General introduction, overview of results, and nonlinear computational aspects,, , (). Google Scholar

[5]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, II: General classes $\sfI$, $\sf{II}$, $\sf{III}_{\sf{1}}$, $\sf{III}_{\sf{2}}$, $\sf{IV}_{\sf{1}}$, $\sf{IV}_{\sf{2}}$,, , (). Google Scholar

[6]

J. Merker and M. Sabzevari, Explicit expression of Cartan's connections for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere,, Cent. Eur. J. Math., 10 (2012), 1801. doi: 10.2478/s11533-012-0052-4. Google Scholar

[7]

J. Merker and M. Sabzevari, Cartan equivalences for $5$-dimensional CR-manifolds in $\mathbbC^4$ belonging to general class III,, , (). Google Scholar

[8]

P. J. Olver, Equivalence, Invariants and Symmetry,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511609565. Google Scholar

[9]

S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall, (1964). Google Scholar

show all references

References:
[1]

V. Beloshapka, V. Ezhov and G. Schmalz, Canonical Cartan connection and holomorphic invariants on Engel CR manifolds,, Russian J. Mathematical Physics, 14 (2007), 121. doi: 10.1134/S106192080702001X. Google Scholar

[2]

É. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1 (1932), 333. Google Scholar

[3]

J. Merker, Rationality in differential algebraic geometry,, to appear in Proceedings of the Abel Symposium 2013, (2013). Google Scholar

[4]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, I: General introduction, overview of results, and nonlinear computational aspects,, , (). Google Scholar

[5]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, II: General classes $\sfI$, $\sf{II}$, $\sf{III}_{\sf{1}}$, $\sf{III}_{\sf{2}}$, $\sf{IV}_{\sf{1}}$, $\sf{IV}_{\sf{2}}$,, , (). Google Scholar

[6]

J. Merker and M. Sabzevari, Explicit expression of Cartan's connections for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere,, Cent. Eur. J. Math., 10 (2012), 1801. doi: 10.2478/s11533-012-0052-4. Google Scholar

[7]

J. Merker and M. Sabzevari, Cartan equivalences for $5$-dimensional CR-manifolds in $\mathbbC^4$ belonging to general class III,, , (). Google Scholar

[8]

P. J. Olver, Equivalence, Invariants and Symmetry,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511609565. Google Scholar

[9]

S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall, (1964). Google Scholar

[1]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[2]

Carlos Durán, Diego Otero. The projective Cartan-Klein geometry of the Helmholtz conditions. Journal of Geometric Mechanics, 2018, 10 (1) : 69-92. doi: 10.3934/jgm.2018003

[3]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[4]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[5]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[6]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[7]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[8]

Thierry Paul, David Sauzin. Normalization in Banach scale Lie algebras via mould calculus and applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4461-4487. doi: 10.3934/dcds.2017191

[9]

Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287

[10]

Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68.

[11]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[12]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[13]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[14]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[15]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[16]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[17]

Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197

[18]

Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092

[19]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[20]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]