Citation: |
[1] |
T. Abe, C. Dong and H. Li, Fusion rules for the vertex operator algebra $M(1)$ and $V_L^+$, Comm. Math. Phys., 253 (2005), 171-219.doi: 10.1007/s00220-004-1132-5. |
[2] |
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham, 1985. |
[3] |
R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068-3071.doi: 10.1073/pnas.83.10.3068. |
[4] |
R. Borcherds and A. Ryba, Modular Moonshine. II, Duke Math. J., 83 (1996), 435-459.doi: 10.1215/S0012-7094-96-08315-5. |
[5] |
Borel, et. al, Seminar on Algebraic Groups and Related Finite Groups, Springer Lecture Notes in Mathematics, 131, Springer-Verlag, Berlin, 1970. |
[6] |
R. W. Carter, Simple Groups of Lie Type, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. |
[7] |
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd Edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, Springer-Verlag, New York, 1999.doi: 10.1007/978-1-4757-6568-7. |
[8] |
C. Y. Dong and R. L. Griess, Jr., Integral forms in vertex operator algebras which are invariant under finite groups, J. Algebra, 365 (2012), 184-198.doi: 10.1016/j.jalgebra.2012.05.006. |
[9] |
I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, Inc., Boston, MA, 1988. |
[10] |
I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J., 66 (1992), 123-168.doi: 10.1215/S0012-7094-92-06604-X. |
[11] |
D. Frohardt and R. L. Griess, Jr., Automorphisms of modular Lie algebras, Nova J. Algebra Geom., 1 (1992), 339-345. Available from: http://www.math.lsa.umich.edu/~rlg/griesspublicationlist.html. |
[12] |
R. L. Griess, Jr. and G. Höhn, Virasoro frames and their stabilizers for the $E_8$ lattice type vertex operator algebra, J. Reine Angew. Math., 561 (2003), 1-37.doi: 10.1515/crll.2003.067. |
[13] |
R. L. Griess and C. H. Lam, Groups of Lie type, vertex algebras and modular moonshine, submitted, 2014, about 40 pp. |
[14] |
G. M. D. Hogeweij, Almost-classical Lie algebras. I, II, Nederl. Akad. Wetensch. Indag. Math., 44 (1982), 441-452, 453-460. |
[15] |
I. M. Isaacs, Algebra: A Graduate Course, Reprint of the 1994 original, Graduate Studies in Mathematics, 100, American Mathematical Society, Providence, RI, 2009. |
[16] |
V. G. Kac, Infinite-Dimensional Lie Algebras, 3rd edition, Cambridge University Press, Cambridge, 1990.doi: 10.1017/CBO9780511626234. |
[17] |
S. Lang, Algebraic groups over finite fields, Amer. J. Math., 78 (1956), 555-563.doi: 10.2307/2372673. |
[18] |
J. Lepowsky and A. Meurman, An $E_8$-approach to the Leech lattice and the Conway group, J. Algebra, 77 (1982), 484-504.doi: 10.1016/0021-8693(82)90268-X. |
[19] |
M. Miyamoto, A new construction of the Moonshine vertex operator algebra over the real number field, Ann. of Math. (2), 159 (2004), 535-596.doi: 10.4007/annals.2004.159.535. |
[20] |
S. A. Prevost, Vertex algebras and integral bases for the enveloping algebras of affine Lie algebras, Mem. Amer. Math. Soc., 96 (1992), viii+97 pp.doi: 10.1090/memo/0466. |
[21] |
H. Shimakura, An $E_8$-approach to the moonshine vertex operator algebra, J. Lond. Math. Soc. (2), 83 (2011), 493-516.doi: 10.1112/jlms/jdq078. |
[22] |
R. Steinberg, Automorphisms of classical Lie algebras, Pacific J. Math., 11 (1961), 1119-1129.doi: 10.2140/pjm.1961.11.1119. |
[23] |
J. Thompson, A simple subgroup of $E_8(3)$, in Finite Groups (ed. N. Iwahori), Japan Society for Promotion of Science, Tokyo, 1976, 113-116. |