2014, 21: 186-192. doi: 10.3934/era.2014.21.186

Globally subanalytic CMC surfaces in $\mathbb{R}^3$

1. 

Rua Carolina Sucupira 723 ap 2002, 60140-120, Fortaleza-CE, Brazil

2. 

Departamento de Matemática, Universidade Federal do Ceará Av. Hum- berto Monte, s/n Campus do Pici - Bloco 914, 60455-760, Fortaleza-CE, Brazil

3. 

Instituto Nacional de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina 110, 22460-320, Rio de Janeiro-RJ, Brazil

4. 

Departamento de Matemática, Universidade Federal do Ceará Av. Humberto Monte, s/n Campus do Pici - Bloco 914, 60455-760, Fortaleza-CE, Brazil

Received  June 2014 Published  December 2014

We prove that globally subanalytic nonsingular CMC surfaces of $\mathbb{R}^3$ are only planes, round spheres, or right circular cylinders.
Citation: J. L. Barbosa, L. Birbrair, M. do Carmo, A. Fernandes. Globally subanalytic CMC surfaces in $\mathbb{R}^3$. Electronic Research Announcements, 2014, 21: 186-192. doi: 10.3934/era.2014.21.186
References:
[1]

A. Alexandrov, A characteristic property of spheres,, \emph{Ann. Mat. Pura Appl.}, 58 (1962), 303.  doi: 10.1007/BF02413056.  Google Scholar

[2]

J. Barbosa and M. do Carmo, On regular algebraic surfaces of $\mathbbR^3$ with constant mean curvature,, \arXiv{1403.7029}, (2014).   Google Scholar

[3]

E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets,, \emph{Inst. Hautes Études Sci. Publ. Math.}, 67 (1988), 5.   Google Scholar

[4]

M. Coste, An Introduction to Semialgebraic Geometry,, Dip. Mat. Univ. Pisa, (2000).   Google Scholar

[5]

M. Coste, An Introduction to O-minimal Geometry,, Dip. Mat. Univ. Pisa, (2000).   Google Scholar

[6]

L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results,, \emph{Bulletin Amer. Math. Soc. (N.S.)}, 15 (1986), 189.  doi: 10.1090/S0273-0979-1986-15468-6.  Google Scholar

[7]

L. van den Dries and C. Miller, Geometric categories and o-minimal structures,, \emph{Duke Math. J.}, 84 (1996), 467.  doi: 10.1215/S0012-7094-96-08416-1.  Google Scholar

[8]

A. Gabrièlov, Projections of semianalytic sets,, \emph{Funkcional. Anal. i Priložen.}, 2 (1968), 18.   Google Scholar

[9]

H. Hopf, Über Flächen mit einer Relation zwischen Hauptkrümmungen,, \emph{Math Nachr.}, 4 (1951), 232.   Google Scholar

[10]

D. Hoffman and W. H. Meeks, III, The strong halfspace theorem for minimal surfaces,, \emph{Invent. Math.}, 101 (1990), 373.  doi: 10.1007/BF01231506.  Google Scholar

[11]

N. Korevaar, R. Kusner and B. Solomon, The struture of complete embedded surfaces with constant mean curvature,, \emph{J. Differential Geom.}, 30 (1989), 465.   Google Scholar

[12]

S. Lojasiewicz, Triangulation of semi-analytic sets,, \emph{Ann. Scuola Norm. Sup. Pisa (3)}, 18 (1964), 449.   Google Scholar

[13]

R. Osserman, Global properties of minimal surfaces in $E^3$ and $E^n$,, \emph{Ann. of Math. (2)}, 80 (1964), 340.  doi: 10.2307/1970396.  Google Scholar

[14]

R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces,, \emph{J. Differential Geom.}, 18 (1983), 791.   Google Scholar

[15]

A. Tarski, A Decision Method for an Elementary Algebra and Geometry,, 2nd edition, (1951).   Google Scholar

show all references

References:
[1]

A. Alexandrov, A characteristic property of spheres,, \emph{Ann. Mat. Pura Appl.}, 58 (1962), 303.  doi: 10.1007/BF02413056.  Google Scholar

[2]

J. Barbosa and M. do Carmo, On regular algebraic surfaces of $\mathbbR^3$ with constant mean curvature,, \arXiv{1403.7029}, (2014).   Google Scholar

[3]

E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets,, \emph{Inst. Hautes Études Sci. Publ. Math.}, 67 (1988), 5.   Google Scholar

[4]

M. Coste, An Introduction to Semialgebraic Geometry,, Dip. Mat. Univ. Pisa, (2000).   Google Scholar

[5]

M. Coste, An Introduction to O-minimal Geometry,, Dip. Mat. Univ. Pisa, (2000).   Google Scholar

[6]

L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results,, \emph{Bulletin Amer. Math. Soc. (N.S.)}, 15 (1986), 189.  doi: 10.1090/S0273-0979-1986-15468-6.  Google Scholar

[7]

L. van den Dries and C. Miller, Geometric categories and o-minimal structures,, \emph{Duke Math. J.}, 84 (1996), 467.  doi: 10.1215/S0012-7094-96-08416-1.  Google Scholar

[8]

A. Gabrièlov, Projections of semianalytic sets,, \emph{Funkcional. Anal. i Priložen.}, 2 (1968), 18.   Google Scholar

[9]

H. Hopf, Über Flächen mit einer Relation zwischen Hauptkrümmungen,, \emph{Math Nachr.}, 4 (1951), 232.   Google Scholar

[10]

D. Hoffman and W. H. Meeks, III, The strong halfspace theorem for minimal surfaces,, \emph{Invent. Math.}, 101 (1990), 373.  doi: 10.1007/BF01231506.  Google Scholar

[11]

N. Korevaar, R. Kusner and B. Solomon, The struture of complete embedded surfaces with constant mean curvature,, \emph{J. Differential Geom.}, 30 (1989), 465.   Google Scholar

[12]

S. Lojasiewicz, Triangulation of semi-analytic sets,, \emph{Ann. Scuola Norm. Sup. Pisa (3)}, 18 (1964), 449.   Google Scholar

[13]

R. Osserman, Global properties of minimal surfaces in $E^3$ and $E^n$,, \emph{Ann. of Math. (2)}, 80 (1964), 340.  doi: 10.2307/1970396.  Google Scholar

[14]

R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces,, \emph{J. Differential Geom.}, 18 (1983), 791.   Google Scholar

[15]

A. Tarski, A Decision Method for an Elementary Algebra and Geometry,, 2nd edition, (1951).   Google Scholar

[1]

V. Afraimovich, T.R. Young. Multipliers of homoclinic orbits on surfaces and characteristics of associated invariant sets. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 691-704. doi: 10.3934/dcds.2000.6.691

[2]

Ambros M. Gleixner, Harald Held, Wei Huang, Stefan Vigerske. Towards globally optimal operation of water supply networks. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 695-711. doi: 10.3934/naco.2012.2.695

[3]

Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161

[4]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks & Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

[5]

Danijela Damjanovic, James Tanis, Zhenqi Jenny Wang. On globally hypoelliptic abelian actions and their existence on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020164

[6]

Alfonso Artigue. Expansive flows of surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505

[7]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[8]

Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54.

[9]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

[10]

Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005

[11]

Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010

[12]

Siran Li, Jiahong Wu, Kun Zhao. On the degenerate boussinesq equations on surfaces. Journal of Geometric Mechanics, 2020, 12 (1) : 107-140. doi: 10.3934/jgm.2020006

[13]

Roberto Paroni, Podio-Guidugli Paolo, Brian Seguin. On the nonlocal curvatures of surfaces with or without boundary. Communications on Pure & Applied Analysis, 2018, 17 (2) : 709-727. doi: 10.3934/cpaa.2018037

[14]

Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77

[15]

Seung Won Kim, P. Christopher Staecker. Dynamics of random selfmaps of surfaces with boundary. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 599-611. doi: 10.3934/dcds.2014.34.599

[16]

José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178

[17]

Robert S. Strichartz. Average error for spectral asymptotics on surfaces. Communications on Pure & Applied Analysis, 2016, 15 (1) : 9-39. doi: 10.3934/cpaa.2016.15.9

[18]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[19]

François Béguin. Smale diffeomorphisms of surfaces: a classification algorithm. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 261-310. doi: 10.3934/dcds.2004.11.261

[20]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

[Back to Top]