\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The spectral gap of graphs and Steklov eigenvalues on surfaces

Abstract Related Papers Cited by
  • Using expander graphs, we construct a sequence $\{\Omega_N\}_{N\in\mathbb{N}}$ of smooth compact surfaces with boundary of perimeter $N$, and with the first non-zero Steklov eigenvalue $\sigma_1(\Omega_N)$ uniformly bounded away from zero. This answers a question which was raised in [10]. The sequence $\sigma_1(\Omega_N) L(\partial\Omega_n)$ grows linearly with the genus of $\Omega_N$, which is the optimal growth rate.
    Mathematics Subject Classification: Primary 58J50, Secondary 35P15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Bañuelos, T. Kulczycki, I. Polterovich and B. Siudeja, Eigenvalue inequalities for mixed Steklov problems, in Operator Theory and its Applications, Amer. Math. Soc. Transl. Ser. 2, 231, Amer. Math. Soc., Providence, RI, 2010, 19-34.

    [2]

    R. Brooks, The first eigenvalue in a tower of coverings, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 137-140.doi: 10.1090/S0273-0979-1985-15397-2.

    [3]

    R. Brooks, The spectral geometry of a tower of coverings, J. Differential Geom., 23 (1986), 97-107.

    [4]

    M. Burger, Estimation de petites valeurs propres du laplacien d'un revêtement de variétés riemanniennes compactes, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 191-194.

    [5]

    P. Buser, On the bipartition of graphs, Discrete Appl. Math., 9 (1984), 105-109.doi: 10.1016/0166-218X(84)90093-3.

    [6]

    F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, No. 92, American Mathematical Society, Providence, RI, 1997.

    [7]

    B. Colbois, A. El Soufi and A. Girouard, Isoperimetric control of the Steklov spectrum, J. Funct. Anal., 261 (2011), 1384-1399.doi: 10.1016/j.jfa.2011.05.006.

    [8]

    B. Colbois and A.-M. Matei, On the optimality of J. Cheeger and P. Buser inequalities, Differential Geom. Appl., 19 (2003), 281-293.doi: 10.1016/S0926-2245(03)00035-4.

    [9]

    A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, arXiv:1209.3789, (2013).

    [10]

    A. Girouard and I. Polterovich, Upper bounds for Steklov eigenvalues on surfaces, Electron. Res. Announc. Math. Sci., 19 (2012), 77-85.doi: 10.3934/era.2012.19.77.

    [11]

    S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.), 43 (2006), 439-561 (electronic).doi: 10.1090/S0273-0979-06-01126-8.

    [12]

    M. Karpukhin, Large Steklov and Laplace eigenvalues, in preparation.

    [13]

    G. Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, arXiv:1103.2448, (2011).

    [14]

    N. N. Moiseev, Introduction to the theory of oscillations of liquid-containing bodies, in Advances in Applied Mechanics, Vol. 8, Academic Press, New York, 1964, 233-289.

    [15]

    M. S. Pinsker, On the complexity of a concentrator, in 7th International Teletraffic Conference, 1973, 318/1-318/4.

    [16]

    P. C. Yang and S. T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55-63.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return