2014, 21: 80-88. doi: 10.3934/era.2014.21.80

Compactly supported Hamiltonian loops with a non-zero Calabi invariant

1. 

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel

Received  November 2013 Revised  February 2014 Published  May 2014

We give examples of compactly supported Hamiltonian loops with a non-zero Calabi invariant on certain open symplectic manifolds.
Citation: Asaf Kislev. Compactly supported Hamiltonian loops with a non-zero Calabi invariant. Electronic Research Announcements, 2014, 21: 80-88. doi: 10.3934/era.2014.21.80
References:
[1]

A. Cannas da Silva, Symplectic Toric Manifolds,, 2001. Available from: \url{http://www.math.ist.utl.pt/~acannas/Books/toric.pdf}., ().   Google Scholar

[2]

Memoirs Amer. Math. Soc., 141 (1999). doi: 10.1090/memo/0672.  Google Scholar

[3]

in Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., 512, Amer. Math. Soc., Providence, RI, 2010, 127-148. doi: 10.1090/conm/512/10061.  Google Scholar

[4]

Second edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8299-6.  Google Scholar

[6]

in Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser 2, 180, Amer. Math. Soc., Providence, RI, 1997, 181-187.  Google Scholar

[7]

J. Top. Anal., 4 (2012), 481-498. doi: 10.1142/S1793525312500215.  Google Scholar

show all references

References:
[1]

A. Cannas da Silva, Symplectic Toric Manifolds,, 2001. Available from: \url{http://www.math.ist.utl.pt/~acannas/Books/toric.pdf}., ().   Google Scholar

[2]

Memoirs Amer. Math. Soc., 141 (1999). doi: 10.1090/memo/0672.  Google Scholar

[3]

in Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., 512, Amer. Math. Soc., Providence, RI, 2010, 127-148. doi: 10.1090/conm/512/10061.  Google Scholar

[4]

Second edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8299-6.  Google Scholar

[6]

in Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser 2, 180, Amer. Math. Soc., Providence, RI, 1997, 181-187.  Google Scholar

[7]

J. Top. Anal., 4 (2012), 481-498. doi: 10.1142/S1793525312500215.  Google Scholar

[1]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]