2015, 22: 12-19. doi: 10.3934/era.2015.22.12

Smoothing 3-dimensional polyhedral spaces

1. 

Steklov Institute, St. Petersburg, Russian Federation

2. 

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Germany

3. 

Mathematics Department, Pennsylvania State University, United States

4. 

National Research University, Higher School of Economics, Moscow, Russian Federation

Received  November 2014 Published  June 2015

We show that 3-dimensional polyhedral manifolds with nonnegative curvature in the sense of Alexandrov can be approximated by nonnegatively curved 3-dimensional Riemannian manifolds.
Citation: Nina Lebedeva, Vladimir Matveev, Anton Petrunin, Vsevolod Shevchishin. Smoothing 3-dimensional polyhedral spaces. Electronic Research Announcements, 2015, 22: 12-19. doi: 10.3934/era.2015.22.12
References:
[1]

C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms,, \emph{Ann. of Math. (2)}, 167 (2008), 1079.  doi: 10.4007/annals.2008.167.1079.  Google Scholar

[2]

B.-L. Chen, G. Xu and Z. Zhang, Local pinching estimates in 3-dim Ricci flow,, \emph{Math. Res. Lett.}, 20 (2013), 845.  doi: 10.4310/MRL.2013.v20.n5.a3.  Google Scholar

[3]

R. S. Hamilton, A compactness property for solutions of the Ricci flow,, \emph{Amer. J. Math.}, 117 (1995), 545.  doi: 10.2307/2375080.  Google Scholar

[4]

V. Kapovitch, Regularity of limits of noncollapsing sequences of manifolds,, \emph{Geom. Funct. Anal.}, 12 (2002), 121.  doi: 10.1007/s00039-002-8240-1.  Google Scholar

[5]

A. Petrunin, Polyhedral approximations of Riemannian manifolds,, \emph{Turkish J. Math.}, 27 (2003), 173.   Google Scholar

[6]

T. Richard, Lower bounds on Ricci flow invariant curvatures and geometric applications,, \emph{J. Reine Angew. Math.}, 703 (2015), 27.  doi: 10.1515/crelle-2013-0042.  Google Scholar

[7]

M. Simon, Ricci flow of almost non-negatively curved three manifolds,, \emph{J. Reine Angew. Math.}, 630 (2009), 177.  doi: 10.1515/CRELLE.2009.038.  Google Scholar

[8]

M. Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below,, \emph{J. Reine Angew. Math.}, 662 (2012), 59.  doi: 10.1515/CRELLE.2011.088.  Google Scholar

[9]

W. Spindeler, $S^1$-Actions on 4-Manifolds and Fixed Point Homogeneous Manifolds of Nonnegative Curvature,, Ph.D. Thesis, (2014).   Google Scholar

show all references

References:
[1]

C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms,, \emph{Ann. of Math. (2)}, 167 (2008), 1079.  doi: 10.4007/annals.2008.167.1079.  Google Scholar

[2]

B.-L. Chen, G. Xu and Z. Zhang, Local pinching estimates in 3-dim Ricci flow,, \emph{Math. Res. Lett.}, 20 (2013), 845.  doi: 10.4310/MRL.2013.v20.n5.a3.  Google Scholar

[3]

R. S. Hamilton, A compactness property for solutions of the Ricci flow,, \emph{Amer. J. Math.}, 117 (1995), 545.  doi: 10.2307/2375080.  Google Scholar

[4]

V. Kapovitch, Regularity of limits of noncollapsing sequences of manifolds,, \emph{Geom. Funct. Anal.}, 12 (2002), 121.  doi: 10.1007/s00039-002-8240-1.  Google Scholar

[5]

A. Petrunin, Polyhedral approximations of Riemannian manifolds,, \emph{Turkish J. Math.}, 27 (2003), 173.   Google Scholar

[6]

T. Richard, Lower bounds on Ricci flow invariant curvatures and geometric applications,, \emph{J. Reine Angew. Math.}, 703 (2015), 27.  doi: 10.1515/crelle-2013-0042.  Google Scholar

[7]

M. Simon, Ricci flow of almost non-negatively curved three manifolds,, \emph{J. Reine Angew. Math.}, 630 (2009), 177.  doi: 10.1515/CRELLE.2009.038.  Google Scholar

[8]

M. Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below,, \emph{J. Reine Angew. Math.}, 662 (2012), 59.  doi: 10.1515/CRELLE.2011.088.  Google Scholar

[9]

W. Spindeler, $S^1$-Actions on 4-Manifolds and Fixed Point Homogeneous Manifolds of Nonnegative Curvature,, Ph.D. Thesis, (2014).   Google Scholar

[1]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[2]

Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020

[3]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[4]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[5]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[6]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[9]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[12]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[13]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[14]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[15]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[16]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[17]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[18]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[19]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021002

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (1)

[Back to Top]