2015, 22: 20-31. doi: 10.3934/era.2015.22.20

Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity

1. 

College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan Province, China, China, China

Received  May 2014 Revised  February 2015 Published  July 2015

In this paper, we study a combined incompressible and vanishing capillarity limit in the barotropic compressible Navier-Stokes-Korteweg equations for weak solutions. For well prepared initial data, the convergence of solutions of the compressible Navier-Stokes-Korteweg equations to the solutions of the incompressible Navier-Stokes equation are justified rigorously by adapting the modulated energy method. Furthermore, the corresponding convergence rates are also obtained.
Citation: Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20
References:
[1]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Rational Mech. Anal., 180 (2006), 1-73. doi: 10.1007/s00205-005-0393-2.

[2]

S. Benzoni-Gavage, R. Danchin and S. Descombes, Well-posedness of one-dimensional Korteweg models, Electron. J. Differential Equations, (2006), 35pp.

[3]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754. doi: 10.1080/03605300008821529.

[4]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223. doi: 10.1007/s00220-003-0859-8.

[5]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[6]

D. Bresch, B. Desjardins and B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 1-9. doi: 10.1016/j.anihpc.2004.02.001.

[7]

Z. Chen and H. Zhao, Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system, J. Math. Pures Appl. (9), 101 (2014), 330-371. doi: 10.1016/j.matpur.2013.06.005.

[8]

F. Charve and B. Haspot, Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system, SIAM J. Math. Anal., 45 (2013), 469-494. doi: 10.1137/120861801.

[9]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 18 (2001), 97-133. doi: 10.1016/S0294-1449(00)00056-1.

[10]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133. doi: 10.1007/BF00250907.

[11]

P. Embid and A. Majda, Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geosphys. Astrophys. Fluid Dynam., 87 (1998), 1-50. doi: 10.1080/03091929808208993.

[12]

J. D. Van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Phys. Chem., 13 (1894), 657-725.

[13]

E. Grenier, Oscillartory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9), 76 (1997), 477-498. doi: 10.1016/S0021-7824(97)89959-X.

[14]

I. Gamba, A. Jüngel and A. Vasseur, Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations, J. Differential Equations, 247 (2009), 3117-3135. doi: 10.1016/j.jde.2009.09.001.

[15]

H. Hattori and D. Li, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069.

[16]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249. doi: 10.1007/s00021-009-0013-2.

[17]

A. Jüngel, C.-K. Lin and K.-C. Wu, An asymptotic limit of a Navier-Stokes system with capillary effects, Commun. Math. Phys., 329 (2014), 725-744. doi: 10.1007/s00220-014-1961-9.

[18]

S. Jiang and Y. Ou, Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains, J. Math. Pures Appl. (9), 96 (2011), 1-28. doi: 10.1016/j.matpur.2011.01.004.

[19]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045. doi: 10.1137/090776068.

[20]

T. Kato, Nonstationary flow of viscous and ideal fluids in $\mathbbR^3$, J. Funct. Anal., 9 (1972), 296-305. doi: 10.1016/0022-1236(72)90003-1.

[21]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér. II, 6 (1901), 1-24.

[22]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 25 (2008), 679-696. doi: 10.1016/j.anihpc.2007.03.005.

[23]

M. Kotschote, Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg type, SIAM J. Math. Anal., 44 (2012), 74-101. doi: 10.1137/110821202.

[24]

Y. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232. doi: 10.1016/j.jmaa.2011.11.006.

[25]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 77 (1998), 585-627. doi: 10.1016/S0021-7824(98)80139-6.

[26]

N. Masmoudi, Ekman layers of rotating fluids: The case of general initial data, Commun. Pure and Appl. Math., 53 (2000), 432-483.

[27]

F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal., 27 (1967), 329-348.

[28]

C. Rohde, On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions, ZAMM Z. Angew. Math. Mech., 85 (2005), 839-857. doi: 10.1002/zamm.200410211.

[29]

Z. Tan, H. Wang and J. Xu, Global existence and optimal $L^2$ decay rate for the strong solutions to the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 390 (2012), 181-187. doi: 10.1016/j.jmaa.2012.01.028.

show all references

References:
[1]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Rational Mech. Anal., 180 (2006), 1-73. doi: 10.1007/s00205-005-0393-2.

[2]

S. Benzoni-Gavage, R. Danchin and S. Descombes, Well-posedness of one-dimensional Korteweg models, Electron. J. Differential Equations, (2006), 35pp.

[3]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754. doi: 10.1080/03605300008821529.

[4]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223. doi: 10.1007/s00220-003-0859-8.

[5]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[6]

D. Bresch, B. Desjardins and B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 1-9. doi: 10.1016/j.anihpc.2004.02.001.

[7]

Z. Chen and H. Zhao, Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system, J. Math. Pures Appl. (9), 101 (2014), 330-371. doi: 10.1016/j.matpur.2013.06.005.

[8]

F. Charve and B. Haspot, Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system, SIAM J. Math. Anal., 45 (2013), 469-494. doi: 10.1137/120861801.

[9]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 18 (2001), 97-133. doi: 10.1016/S0294-1449(00)00056-1.

[10]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133. doi: 10.1007/BF00250907.

[11]

P. Embid and A. Majda, Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geosphys. Astrophys. Fluid Dynam., 87 (1998), 1-50. doi: 10.1080/03091929808208993.

[12]

J. D. Van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Phys. Chem., 13 (1894), 657-725.

[13]

E. Grenier, Oscillartory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9), 76 (1997), 477-498. doi: 10.1016/S0021-7824(97)89959-X.

[14]

I. Gamba, A. Jüngel and A. Vasseur, Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations, J. Differential Equations, 247 (2009), 3117-3135. doi: 10.1016/j.jde.2009.09.001.

[15]

H. Hattori and D. Li, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97. doi: 10.1006/jmaa.1996.0069.

[16]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249. doi: 10.1007/s00021-009-0013-2.

[17]

A. Jüngel, C.-K. Lin and K.-C. Wu, An asymptotic limit of a Navier-Stokes system with capillary effects, Commun. Math. Phys., 329 (2014), 725-744. doi: 10.1007/s00220-014-1961-9.

[18]

S. Jiang and Y. Ou, Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains, J. Math. Pures Appl. (9), 96 (2011), 1-28. doi: 10.1016/j.matpur.2011.01.004.

[19]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045. doi: 10.1137/090776068.

[20]

T. Kato, Nonstationary flow of viscous and ideal fluids in $\mathbbR^3$, J. Funct. Anal., 9 (1972), 296-305. doi: 10.1016/0022-1236(72)90003-1.

[21]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér. II, 6 (1901), 1-24.

[22]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 25 (2008), 679-696. doi: 10.1016/j.anihpc.2007.03.005.

[23]

M. Kotschote, Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg type, SIAM J. Math. Anal., 44 (2012), 74-101. doi: 10.1137/110821202.

[24]

Y. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232. doi: 10.1016/j.jmaa.2011.11.006.

[25]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 77 (1998), 585-627. doi: 10.1016/S0021-7824(98)80139-6.

[26]

N. Masmoudi, Ekman layers of rotating fluids: The case of general initial data, Commun. Pure and Appl. Math., 53 (2000), 432-483.

[27]

F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal., 27 (1967), 329-348.

[28]

C. Rohde, On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions, ZAMM Z. Angew. Math. Mech., 85 (2005), 839-857. doi: 10.1002/zamm.200410211.

[29]

Z. Tan, H. Wang and J. Xu, Global existence and optimal $L^2$ decay rate for the strong solutions to the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 390 (2012), 181-187. doi: 10.1016/j.jmaa.2012.01.028.

[1]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic and Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[2]

Yang Liu, Chunyou Sun. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4383-4408. doi: 10.3934/dcdss.2021124

[3]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[4]

Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic and Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017

[5]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[6]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[7]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[8]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[9]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[10]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[11]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[12]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[13]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[14]

Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243

[15]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[16]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[17]

Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193

[18]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[19]

Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235

[20]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]