\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The $\boldsymbol{q}$-deformed Campbell-Baker-Hausdorff-Dynkin theorem

Abstract Related Papers Cited by
  • We announce an analogue of the celebrated theorem by Campbell, Baker, Hausdorff, and Dynkin for the $q$-exponential $\exp_q(x)=\sum_{n=0}^{\infty} \frac{x^n}{[n]_q!}$, with the usual notation for $q$-factorials: $[n]_q!:=[n-1]_q!\cdot(q^n-1)/(q-1)$ and $[0]_q!:=1$. Our result states that if $x$ and $y$ are non-commuting indeterminates and $[y,x]_q$ is the $q$-commutator $yx-q\,xy$, then there exist linear combinations $Q_{i,j}(x,y)$ of iterated $q$-commutators with exactly $i$ $x$'s, $j$ $y$'s and $[y,x]_q$ in their central position, such that $\exp_q(x)\exp_q(y)=\exp_q\!\big(x+y+\sum_{i,j\geq 1}Q_{i,j}(x,y)\big)$. Our expansion is consistent with the well-known result by Schützenberger ensuring that one has $\exp_q(x)\exp_q(y)=\exp_q(x+y)$ if and only if $[y,x]_q=0$, and it improves former partial results on $q$-deformed exponentiation. Furthermore, we give an algorithm which produces conjecturally a minimal generating set for the relations between $[y,x]_q$-centered $q$-commutators of any bidegree $(i,j)$, and it allows us to compute all possible $Q_{i,j}$.
    Mathematics Subject Classification: 05A30, 81R50, 16T20 (Pri); 17B37, 05A15 (Sec).

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Achilles, A. Bonfiglioli and J. Katriel, A sixth-order expansion of the $q$-Campbell-Baker-Hausdorff series, preprint, 2014.

    [2]

    M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Mathematical Phys., 17 (1976), 524-527.doi: 10.1063/1.522937.

    [3]

    D. Bonatsos and C. Daskaloyannis, Model of $n$ coupled generalized deformed oscillators for vibrations of polyatomic molecules, Phys. Rev. A, 48 (1993), 3611-3616.doi: 10.1103/PhysRevA.48.3611.

    [4]

    F. Bonechi, E. Celeghini, R. Giachetti, C. M. Pereña, E. Sorace and M. Tarlini, Exponential mapping for nonsemisimple quantum groups, J. Phys. A, 27 (1994), 1307-1315.doi: 10.1088/0305-4470/27/4/023.

    [5]

    A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra. The Theorem of Campbell, Baker, Hausdorff and Dynkin, Lecture Notes in Mathematics, 2034, Springer-Verlag, Heidelberg, 2012.doi: 10.1007/978-3-642-22597-0.

    [6]

    A. Bonfiglioli and J. Katriel, The $q$-analogue of the Campbell-Baker-Hausdorff-Dynkin Theorem, submitted, 2015.

    [7]

    J. Cigler, Operatormethoden für $q$-Identitäten, Monatsh. Math., 88 (1979), 87-105.doi: 10.1007/BF01319097.

    [8]

    V. G. Drinfel'd, Quantum groups, J. Soviet Math., 41 (1988), 898-915.doi: 10.1007/BF01247086.

    [9]

    V. G. Drinfel'd, On some unsolved problems in quantum group theory, in Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1-8.doi: 10.1007/BFb0101175.

    [10]

    K. Ebrahimi-Fard and D. Manchon, A Magnus- and Fer-type formula in dendriform algebras, Found. Comput. Math., 9 (2009), 295-316.doi: 10.1007/s10208-008-9023-3.

    [11]

    K. Ebrahimi-Fard and D. Manchon, Dendriform equations, J. Algebra, 322 (2009), 4053-4079.doi: 10.1016/j.jalgebra.2009.06.002.

    [12]

    K. Ebrahimi-Fard and D. Manchon, Twisted dendriform algebras and the pre-Lie Magnus expansion, J. Pure Appl. Algebra, 215 (2011), 2615-2627.doi: 10.1016/j.jpaa.2011.03.004.

    [13]

    T. Ernst, A Comprehensive Treatment of $q$-Calculus, Birkhäuser/Springer Basel AG, Basel, 2012.doi: 10.1007/978-3-0348-0431-8.

    [14]

    A. M. Gavrilik and Yu. A. Mishchenko, Deformed Bose gas models aimed at taking into account both comositeness of particles and their interaction, Ukr. J. Phys., 58 (2013), 1171-1177.

    [15]

    A. C. Hearn, REDUCE, A portable general-purpose computer algebra system. Available from: http://reduce-algebra.sourceforge.net/.

    [16]

    A. Inomata and S. Kirchner, Bose-Einstein condensation of a quon gas, Phys. Lett. A, 231 (1997), 311-314.doi: 10.1016/S0375-9601(97)00345-9.

    [17]

    P. E. T. Jørgensen and R. F. Werner, Coherent states of the q-canonical commutation relations, Comm. Math. Phys., 164 (1994), 455-471.doi: 10.1007/BF02101486.

    [18]

    V. Kac and P. Cheung, Quantum Calculus, Universitext; Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4613-0071-7.

    [19]

    J. Katriel and G. Duchamp, Ordering relations for q-boson operators, continued fractions techniques and the q-CBH enigma, J. Phys. A, 28 (1995), 7209-7225.doi: 10.1088/0305-4470/28/24/018.

    [20]

    J. Katriel, M. Rasetti and A. I. Solomon, The q-Zassenhaus formula, Lett. Math. Phys., 37 (1996), 11-13.doi: 10.1007/BF00400134.

    [21]

    J. Katriel and A. I. Solomon, A no-go theorem for a Lie-consistent $q$-Campbell-Baker-Hausdorff expansion, J. Math. Phys., 35 (1994), 6172-6178.doi: 10.1063/1.530736.

    [22]

    J. Katriel and A. I. Solomon, A $q$-analogue of the Campbell-Baker-Hausdorff expansion, J. Phys. A, 24 (1991), L1139-L1142.doi: 10.1088/0305-4470/24/19/003.

    [23]

    C. Quesne, Disentangling $q$-exponentials: A general approach, Internat. J. Theoret. Phys., 43 (2004), 545-559.doi: 10.1023/B:IJTP.0000028885.42890.f5.

    [24]

    D. L. Reiner, A $q$-analog of the Campbell-Baker-Hausdorff formula, Discrete Math., 43 (1983), 125-129.doi: 10.1016/0012-365X(83)90030-4.

    [25]

    N. Reshetikhin, Quantization of Lie bialgebras, Internat. Math. Res. Notices, (1992), 143-151.doi: 10.1155/S1073792892000163.

    [26]

    M.-P. Schützenberger, Une interprétation de certains solutions de l'équation fonctionnelle: $F(x+y)=F(x)F(y)$, C. R. Acad. Sci. Paris, 236 (1953), 352-353.

    [27]

    R. Sridhar and R. Jagannathan, On the q-analogues of the Zassenhaus formula for disentangling exponential operators, J. Comput. Appl. Math., 160 (2003), 297-305.doi: 10.1016/S0377-0427(03)00633-2.

    [28]

    N. Ja. Vilenkin and A. U. Klimyk, Representations of Lie Groups and Special Functions. Vol. 3: Classical and Quantum Groups and Special Functions, Mathematics and Its Applications (Soviet Series), 75, Springer, Netherlands, 1992.doi: 10.1007/978-94-017-2881-2.

    [29]

    H. Wachter, q-Exponentials on quantum spaces, Eur. Phys. J. C Part. Fields, 37 (2004), 379-389.doi: 10.1140/epjc/s2004-01999-5.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(250) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return