\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fixed frequency eigenfunction immersions and supremum norms of random waves

Abstract Related Papers Cited by
  • A compact Riemannian manifold may be immersed into Euclidean space by using high frequency Laplace eigenfunctions. We study the geometry of the manifold viewed as a metric space endowed with the distance function from the ambient Euclidean space. As an application we give a new proof of a result of Burq-Lebeau and others on upper bounds for the sup-norms of random linear combinations of high frequency eigenfunctions.
    Mathematics Subject Classification: 35P05 (Pri), 53C42 (Sec).

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adler and J. Taylor, Random Fields and Geometry, Springer Monographs in Mathematics, Springer, New York, 2007.

    [2]

    A. Ayache and N. Tzvetkov, $L^p$ properties of Gaussian random series, Trans. Amer. Math. Soc., 360 (2008), 4425-4439.doi: 10.1090/S0002-9947-08-04456-5.

    [3]

    P. Bartlett, Theoretical statistics, lecture 14, Electronic notes. Available from: http://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/14notes.pdf.

    [4]

    N. Burq and G. Lebeau, Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 917-962.

    [5]

    Y. Canzani and B. Hanin, Scaling limit for the kernel of the spectral projector and remainder estimates in the Pointwise Weyl Law, preprint, arXiv:1411.0658.

    [6]

    J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79.doi: 10.1007/BF01405172.

    [7]

    R. Feng and S. Zelditch, Median and mean of the supremum of $L^2$ normalized random holomorphic fields, J. Func. Anal., 266 (2014), 5085-5107.doi: 10.1016/j.jfa.2014.02.012.

    [8]

    L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218.doi: 10.1007/BF02391913.

    [9]

    M. Krishnapur, P. Kurlberg and I. Wigman, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2), 177 (2013), 699-737.doi: 10.4007/annals.2013.177.2.8.

    [10]

    F. Oravecz, Z. Rudnick and I. Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier (Grenoble), 58 (2008), 299-335.doi: 10.5802/aif.2351.

    [11]

    V. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, (Russian) Funksional. Anal. i Prolzhen., 14 (1980), 25-34.

    [12]

    J.-M. Loubes and B. Pelletier, A kernel-based classifier on a Riemannian manifold, Statist. Decisions, 26 (2008), 35-51.doi: 10.1524/stnd.2008.0911.

    [13]

    L. Nicolaescu, Complexity of random smooth functions on compact manifolds, Indiana Univ. Math. J., 63 (2014), 1037-1065.doi: 10.1512/iumj.2014.63.5321.

    [14]

    J. Neuheisel, The Asymptotic Distribution of Nodal Sets on Spheres, Ph.D. Thesis, The Johns Hopkins University, 2000.

    [15]

    B. Shiffman and S. Zelditch, Random polynomials of high degree and Levy concentration of measure, Asian J. Math., 7 (2003), 627-646.

    [16]

    G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., 32 (1990), 99-130.

    [17]

    N. Tzvetkov, Riemannian analog of a Paley-Zygmund theorem, in Séminaire Équations aux dérivées partielles, 2008-2009, 1-14.

    [18]

    J. VanderKam, $L^\infty$ norms and quantum ergodicity on the sphere, Internat. Math. Res. Notices, 7 (1997), 329-347.doi: 10.1155/S1073792897000238.

    [19]

    S. Zelditch, Real and complex zeros of Riemannian random waves, in Spectral Analysis in Geometry and Number Theory, Contemp. Math., 484, Amer. Math. Soc., Providence, RI, 2009, 321-342.doi: 10.1090/conm/484/09482.

    [20]

    S. Zelditch, Fine structure of Zoll spectra, J. Func. Anal., 143 (1997), 415-460.doi: 10.1006/jfan.1996.2981.

    [21]

    S. Zelditch, Szegö kernels and a theorem of Tian, Internat. Math Res. Notices, (1998), 317-331.doi: 10.1155/S107379289800021X.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return