January  2015, 22: 92-102. doi: 10.3934/era.2015.22.92

Proof of the main conjecture on $g$-areas

1. 

Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal H3C 3J7, Québec

2. 

Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada

Received  June 2015 Revised  August 2015 Published  November 2015

In this paper, we prove the main conjecture on $g$-areas arising from [7]. That conjecture was announced by the first author in 2004. It~states that the $g$-area of any Hamiltonian diffeomorphism $\phi$ is equal to the positive Hofer pseudo-distance between $\phi$ and the subspace of Hamiltonian diffeomorphisms that can be expressed as a product of at most $g$ commutators.
Citation: François Lalonde, Egor Shelukhin. Proof of the main conjecture on $g$-areas. Electronic Research Announcements, 2015, 22: 92-102. doi: 10.3934/era.2015.22.92
References:
[1]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui péservent une forme symplectique,, Comment. Math. Helv., 53 (1978), 174. doi: 10.1007/BF02566074. Google Scholar

[2]

L. Buhovsky and Y. Ostrover, On the uniqueness of Hofer's geometry,, Geom. Funct. Anal., 21 (2011), 1296. doi: 10.1007/s00039-011-0143-6. Google Scholar

[3]

M. Entov, Commutator length of symplectomorphisms,, Comment. Math. Helv., 79 (2004), 58. doi: 10.1007/s00014-001-0799-0. Google Scholar

[4]

F. Lalonde, A field theory for symplectic fibrations over surfaces,, Geom. Topol., 8 (2004), 1189. doi: 10.2140/gt.2004.8.1189. Google Scholar

[5]

F. Lalonde and D. McDuff, Hofer's $L^{\infty}$-geometry: Energy and stability of Hamiltonian flows. Part II,, Invent. Math., 122 (1995), 35. doi: 10.1007/BF01231437. Google Scholar

[6]

F. Lalonde and D. McDuff, Symplectic stuctures on fiber bundles,, Topology, 42 (2003), 309. doi: 10.1016/S0040-9383(01)00020-9. Google Scholar

[7]

F. Lalonde and A. Teleman, The $g$-areas and commutator length,, Internat. J. Math., 24 (2013). doi: 10.1142/S0129167X13500572. Google Scholar

[8]

D. McDuff, Geometric variants of the Hofer norm,, J. Symplectic Geom., 1 (2002), 197. Google Scholar

[9]

L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms,, Lectures in Mathematics ETH Zürich, (2001). doi: 10.1007/978-3-0348-8299-6. Google Scholar

[10]

G. M. Tuynman, The Hamiltonian?,, in Geometric Methods in Physics. XXXII Workshop, (2013), 287. doi: 10.1007/978-3-319-06248-8_25. Google Scholar

show all references

References:
[1]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui péservent une forme symplectique,, Comment. Math. Helv., 53 (1978), 174. doi: 10.1007/BF02566074. Google Scholar

[2]

L. Buhovsky and Y. Ostrover, On the uniqueness of Hofer's geometry,, Geom. Funct. Anal., 21 (2011), 1296. doi: 10.1007/s00039-011-0143-6. Google Scholar

[3]

M. Entov, Commutator length of symplectomorphisms,, Comment. Math. Helv., 79 (2004), 58. doi: 10.1007/s00014-001-0799-0. Google Scholar

[4]

F. Lalonde, A field theory for symplectic fibrations over surfaces,, Geom. Topol., 8 (2004), 1189. doi: 10.2140/gt.2004.8.1189. Google Scholar

[5]

F. Lalonde and D. McDuff, Hofer's $L^{\infty}$-geometry: Energy and stability of Hamiltonian flows. Part II,, Invent. Math., 122 (1995), 35. doi: 10.1007/BF01231437. Google Scholar

[6]

F. Lalonde and D. McDuff, Symplectic stuctures on fiber bundles,, Topology, 42 (2003), 309. doi: 10.1016/S0040-9383(01)00020-9. Google Scholar

[7]

F. Lalonde and A. Teleman, The $g$-areas and commutator length,, Internat. J. Math., 24 (2013). doi: 10.1142/S0129167X13500572. Google Scholar

[8]

D. McDuff, Geometric variants of the Hofer norm,, J. Symplectic Geom., 1 (2002), 197. Google Scholar

[9]

L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms,, Lectures in Mathematics ETH Zürich, (2001). doi: 10.1007/978-3-0348-8299-6. Google Scholar

[10]

G. M. Tuynman, The Hamiltonian?,, in Geometric Methods in Physics. XXXII Workshop, (2013), 287. doi: 10.1007/978-3-319-06248-8_25. Google Scholar

[1]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[2]

Michael Khanevsky. Hofer's length spectrum of symplectic surfaces. Journal of Modern Dynamics, 2015, 9: 219-235. doi: 10.3934/jmd.2015.9.219

[3]

Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471

[4]

Dongping Zhuang. Irrational stable commutator length in finitely presented groups. Journal of Modern Dynamics, 2008, 2 (3) : 499-507. doi: 10.3934/jmd.2008.2.499

[5]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[6]

Frol Zapolsky. Quasi-states and the Poisson bracket on surfaces. Journal of Modern Dynamics, 2007, 1 (3) : 465-475. doi: 10.3934/jmd.2007.1.465

[7]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[8]

Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002

[9]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[10]

Yan Liu, Minjia Shi, Hai Q. Dinh, Songsak Sriboonchitta. Repeated-root constacyclic codes of length $ 3\ell^mp^s $. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020025

[11]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

[12]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[13]

Luca Lussardi. On a Poisson's equation arising from magnetism. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 769-772. doi: 10.3934/dcdss.2015.8.769

[14]

Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609

[15]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[16]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[17]

Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing Ⅱ: Flocking. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239

[18]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[19]

Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004

[20]

Simon Hochgerner, Luis García-Naranjo. $G$-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball. Journal of Geometric Mechanics, 2009, 1 (1) : 35-53. doi: 10.3934/jgm.2009.1.35

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]