-
Previous Article
Asymptotic Hilbert polynomial and a bound for Waldschmidt constants
- ERA-MS Home
- This Volume
- Next Article
Extensions of isometric embeddings of pseudo-Euclidean metric polyhedra
1. | Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States |
2. | Mathematics and Mechanics Faculty, St. Petersburg State University, Universitetsky pr., 28, Stary Peterhof, 198504, Russian Federation |
References:
[1] |
A. V. Akopyan and A. Tarasov, PL-analogue of the Nash-Kuiper Theorem, preprint, 2007. |
[2] |
U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on $\mathbbR^m$, J. Geom., 16 (1981), 187-193.
doi: 10.1007/BF01917587. |
[3] |
Yu. D. Burago and V. A. Zalgaller, Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into $\mathbb{R}^3$, Algebra i Analiz, 7 (1995), 76-95. |
[4] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[5] |
S. A. Krat, Approximation Problems in Length Geometry, Ph.D. Thesis, The Pennsylvania State University, ProQuest LLC, Ann Arbor, MI, 2004. |
[6] |
B. Minemyer, Simplicial Isometric Embeddings of Indefinite Metric Polyhedra, arXiv:1211.0584, 2015. |
[7] |
V. A. Zalgaller, Isometric imbedding of polyhedra, Dokl. Akad. Nauk SSSR, 123 (1958), 599-601. |
show all references
References:
[1] |
A. V. Akopyan and A. Tarasov, PL-analogue of the Nash-Kuiper Theorem, preprint, 2007. |
[2] |
U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on $\mathbbR^m$, J. Geom., 16 (1981), 187-193.
doi: 10.1007/BF01917587. |
[3] |
Yu. D. Burago and V. A. Zalgaller, Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into $\mathbb{R}^3$, Algebra i Analiz, 7 (1995), 76-95. |
[4] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[5] |
S. A. Krat, Approximation Problems in Length Geometry, Ph.D. Thesis, The Pennsylvania State University, ProQuest LLC, Ann Arbor, MI, 2004. |
[6] |
B. Minemyer, Simplicial Isometric Embeddings of Indefinite Metric Polyhedra, arXiv:1211.0584, 2015. |
[7] |
V. A. Zalgaller, Isometric imbedding of polyhedra, Dokl. Akad. Nauk SSSR, 123 (1958), 599-601. |
[1] |
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 |
[2] |
Xumin Jiang. Isometric embedding with nonnegative Gauss curvature under the graph setting. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3463-3477. doi: 10.3934/dcds.2019143 |
[3] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[4] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[5] |
Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819 |
[6] |
Amol Sasane. Extension of the $\nu$-metric for stabilizable plants over $H^\infty$. Mathematical Control and Related Fields, 2012, 2 (1) : 29-44. doi: 10.3934/mcrf.2012.2.29 |
[7] |
Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323 |
[8] |
Gernot Greschonig. Regularity of topological cocycles of a class of non-isometric minimal homeomorphisms. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4305-4321. doi: 10.3934/dcds.2013.33.4305 |
[9] |
Matthias Erbar, Dominik Forkert, Jan Maas, Delio Mugnolo. Gradient flow formulation of diffusion equations in the Wasserstein space over a Metric graph. Networks and Heterogeneous Media, 2022, 17 (5) : 687-717. doi: 10.3934/nhm.2022023 |
[10] |
Özlem Acar, Aybala Sevde Özkapu. Multivalued rational type F-contraction on orthogonal metric space. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022026 |
[11] |
Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239 |
[12] |
Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407 |
[13] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[14] |
Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291 |
[15] |
Katarzyna Grabowska, Paweƚ Urbański. Geometry of Routh reduction. Journal of Geometric Mechanics, 2019, 11 (1) : 23-44. doi: 10.3934/jgm.2019002 |
[16] |
Jean-Marc Couveignes, Reynald Lercier. The geometry of some parameterizations and encodings. Advances in Mathematics of Communications, 2014, 8 (4) : 437-458. doi: 10.3934/amc.2014.8.437 |
[17] |
Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291 |
[18] |
Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010 |
[19] |
Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54. |
[20] |
Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]