2016, 23: 8-18. doi: 10.3934/era.2016.23.002

Asymptotic Hilbert polynomial and a bound for Waldschmidt constants

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, Łojasiewicza 6, PL-30-348 Kraków, Poland, Poland, Poland

Received  December 2015 Revised  April 2016 Published  June 2016

In the paper we give a method to compute an upper bound for the Waldschmidt constants of a wide class of ideals. This generalizes the result obtained by Dumnicki, Harbourne, Szemberg and Tutaj-Gasińska, Adv. Math. 2014, [5]. Our bound is given by a root of a suitable derivative of a certain polynomial associated with the asymptotic Hilbert polynomial.
Citation: Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002
References:
[1]

Th. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. L. Knutsen, W. Syzdek and T. Szemberg, A primer on Seshadri constants, in Interactions of Classical and Numerical Algebraic Geometry, Proceedings of a conference in honor of A. J. Sommese, held at Notre Dame, May 22-24 2008 (eds. D. J. Bates, G.-M. Besana, S. Di Rocco and C. W. Wampler), Contemporary Mathematics, 496, American Mathematical Society, Providence, RI, 2009, 362pp. doi: 10.1090/conm/496.  Google Scholar

[2]

C. Bocci, S. Cooper and B. Harbourne, Containment results for ideals of various configurations of points in $\mathbbP^N$, J. Pure Appl. Algebra, 218 (2014), 65-75. doi: 10.1016/j.jpaa.2013.04.012.  Google Scholar

[3]

C. Bocci and B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geometry, 19 (2010), 399-417. doi: 10.1090/S1056-3911-09-00530-X.  Google Scholar

[4]

C. Bocci and B. Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc., 138 (2010), 1175-1190. doi: 10.1090/S0002-9939-09-10108-9.  Google Scholar

[5]

M. Dumnicki, B. Harbourne, T. Szemberg and H. Tutaj-Gasińska, Linear subspaces, symbolic powers and Nagata type conjectures, Adv. Math., 252 (2014), 471-491. doi: 10.1016/j.aim.2013.10.029.  Google Scholar

[6]

M. Dumnicki, T. Szemberg, J. Szpond and H. Tutaj-Gasińska, Symbolic generic initial systems of star configurations, J. Pure Appl. Algebra, 219 (2015), 1073–-1081. doi: 10.1016/j.jpaa.2014.05.035.  Google Scholar

[7]

M. Dumnicki, J. Szpond and H. Tutaj-Gasińska, Asymptotic Hilbert polynomials and limiting shapes, J. Pure Appl. Algebra, 219 (2015), 4446-4457. doi: 10.1016/j.jpaa.2015.02.026.  Google Scholar

[8]

L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye and M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble), 56 (2006), 1701-1734. doi: 10.5802/aif.2225.  Google Scholar

[9]

L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math., 131 (2009), 607-651. doi: 10.1353/ajm.0.0054.  Google Scholar

[10]

L. Ein, R. Lazarsfeld and K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math., 144 (2001), 241-252. doi: 10.1007/s002220100121.  Google Scholar

[11]

D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-5350-1.  Google Scholar

[12]

H. Esnault and E. Viehweg, Sur une minoration du degré d'hypersurfaces s'annulant en certains points, Math. Ann., 263 (1983), 75-86. doi: 10.1007/BF01457085.  Google Scholar

[13]

A. Galligo, Á propos du théorème de préparation de Weierstrass, in Fonctions de Plusieurs Variables Complexes, Lecture Notes in Math., Vol. 409, Springer, Berlin, 1974, 543-579.  Google Scholar

[14]

A. V. Geramita, B. Harbourne and J. Migliore, Star configurations in $\mathbbP^n$, J. Algebra, 376 (2013), 279-299. doi: 10.1016/j.jalgebra.2012.11.034.  Google Scholar

[15]

M. L. Green, Generic initial ideals, in Six Lectures on Commutative Algebra, Progr. Math., 166, Birkhäuser, Basel, 1998, 119-186.  Google Scholar

[16]

J. Herzog and H. Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc., 350 (1998), 2879-2902. doi: 10.1090/S0002-9947-98-02096-0.  Google Scholar

[17]

H. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math., 147 (2002), 349-369. doi: 10.1007/s002220100176.  Google Scholar

[18]

S. Mayes, The asymptotic behaviour of symbolic generic initial systems of generic points, J. Pure Appl. Alg., 218 (2014), 381-390. doi: 10.1016/j.jpaa.2013.06.002.  Google Scholar

[19]

S. Mayes, The limiting shape of the generic initial system of a complete intersection, Comm. Algebra, 42 (2014), 2299-2310. doi: 10.1080/00927872.2012.758271.  Google Scholar

[20]

M. Mustaţă, On multiplicities of graded sequences of ideals, J. Algebra, 256 (2002), 229-249. doi: 10.1016/S0021-8693(02)00112-6.  Google Scholar

[21]

S. Sullivant, Combinatorial symbolic powers, J. Algebra, 319 (2008), 115-142. doi: 10.1016/j.jalgebra.2007.09.024.  Google Scholar

show all references

References:
[1]

Th. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. L. Knutsen, W. Syzdek and T. Szemberg, A primer on Seshadri constants, in Interactions of Classical and Numerical Algebraic Geometry, Proceedings of a conference in honor of A. J. Sommese, held at Notre Dame, May 22-24 2008 (eds. D. J. Bates, G.-M. Besana, S. Di Rocco and C. W. Wampler), Contemporary Mathematics, 496, American Mathematical Society, Providence, RI, 2009, 362pp. doi: 10.1090/conm/496.  Google Scholar

[2]

C. Bocci, S. Cooper and B. Harbourne, Containment results for ideals of various configurations of points in $\mathbbP^N$, J. Pure Appl. Algebra, 218 (2014), 65-75. doi: 10.1016/j.jpaa.2013.04.012.  Google Scholar

[3]

C. Bocci and B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geometry, 19 (2010), 399-417. doi: 10.1090/S1056-3911-09-00530-X.  Google Scholar

[4]

C. Bocci and B. Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc., 138 (2010), 1175-1190. doi: 10.1090/S0002-9939-09-10108-9.  Google Scholar

[5]

M. Dumnicki, B. Harbourne, T. Szemberg and H. Tutaj-Gasińska, Linear subspaces, symbolic powers and Nagata type conjectures, Adv. Math., 252 (2014), 471-491. doi: 10.1016/j.aim.2013.10.029.  Google Scholar

[6]

M. Dumnicki, T. Szemberg, J. Szpond and H. Tutaj-Gasińska, Symbolic generic initial systems of star configurations, J. Pure Appl. Algebra, 219 (2015), 1073–-1081. doi: 10.1016/j.jpaa.2014.05.035.  Google Scholar

[7]

M. Dumnicki, J. Szpond and H. Tutaj-Gasińska, Asymptotic Hilbert polynomials and limiting shapes, J. Pure Appl. Algebra, 219 (2015), 4446-4457. doi: 10.1016/j.jpaa.2015.02.026.  Google Scholar

[8]

L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye and M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble), 56 (2006), 1701-1734. doi: 10.5802/aif.2225.  Google Scholar

[9]

L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math., 131 (2009), 607-651. doi: 10.1353/ajm.0.0054.  Google Scholar

[10]

L. Ein, R. Lazarsfeld and K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math., 144 (2001), 241-252. doi: 10.1007/s002220100121.  Google Scholar

[11]

D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-5350-1.  Google Scholar

[12]

H. Esnault and E. Viehweg, Sur une minoration du degré d'hypersurfaces s'annulant en certains points, Math. Ann., 263 (1983), 75-86. doi: 10.1007/BF01457085.  Google Scholar

[13]

A. Galligo, Á propos du théorème de préparation de Weierstrass, in Fonctions de Plusieurs Variables Complexes, Lecture Notes in Math., Vol. 409, Springer, Berlin, 1974, 543-579.  Google Scholar

[14]

A. V. Geramita, B. Harbourne and J. Migliore, Star configurations in $\mathbbP^n$, J. Algebra, 376 (2013), 279-299. doi: 10.1016/j.jalgebra.2012.11.034.  Google Scholar

[15]

M. L. Green, Generic initial ideals, in Six Lectures on Commutative Algebra, Progr. Math., 166, Birkhäuser, Basel, 1998, 119-186.  Google Scholar

[16]

J. Herzog and H. Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc., 350 (1998), 2879-2902. doi: 10.1090/S0002-9947-98-02096-0.  Google Scholar

[17]

H. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math., 147 (2002), 349-369. doi: 10.1007/s002220100176.  Google Scholar

[18]

S. Mayes, The asymptotic behaviour of symbolic generic initial systems of generic points, J. Pure Appl. Alg., 218 (2014), 381-390. doi: 10.1016/j.jpaa.2013.06.002.  Google Scholar

[19]

S. Mayes, The limiting shape of the generic initial system of a complete intersection, Comm. Algebra, 42 (2014), 2299-2310. doi: 10.1080/00927872.2012.758271.  Google Scholar

[20]

M. Mustaţă, On multiplicities of graded sequences of ideals, J. Algebra, 256 (2002), 229-249. doi: 10.1016/S0021-8693(02)00112-6.  Google Scholar

[21]

S. Sullivant, Combinatorial symbolic powers, J. Algebra, 319 (2008), 115-142. doi: 10.1016/j.jalgebra.2007.09.024.  Google Scholar

[1]

André de Carvalho, Toby Hall. Decoration invariants for horseshoe braids. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 863-906. doi: 10.3934/dcds.2010.27.863

[2]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[3]

Jacek Serafin. A faithful symbolic extension. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1051-1062. doi: 10.3934/cpaa.2012.11.1051

[4]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[5]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[6]

BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85

[7]

Yong Fang. Thermodynamic invariants of Anosov flows and rigidity. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1185-1204. doi: 10.3934/dcds.2009.24.1185

[8]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[9]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[10]

Song Shao, Xiangdong Ye. Non-wandering sets of the powers of maps of a star. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1175-1184. doi: 10.3934/dcds.2003.9.1175

[11]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[12]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[13]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[14]

Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209

[15]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[16]

George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215

[17]

Walter D. Neumann and Jun Yang. Invariants from triangulations of hyperbolic 3-manifolds. Electronic Research Announcements, 1995, 1: 72-79.

[18]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475

[19]

Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847

[20]

Thomas Fidler, Markus Grasmair, Otmar Scherzer. Identifiability and reconstruction of shapes from integral invariants. Inverse Problems & Imaging, 2008, 2 (3) : 341-354. doi: 10.3934/ipi.2008.2.341

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (0)

[Back to Top]