2016, 23: 19-24. doi: 10.3934/era.2016.23.003

Nonexistence results for a fully nonlinear evolution inequality

1. 

School of Science, Hezhou University, Hezhou, 542899, Guangxi Province, China

Received  January 2015 Revised  April 2016 Published  June 2016

In this paper, a Liouville type theorem is proved for some global fully nonlinear evolution inequality via suitable choices of test functions and the argument of integration by parts.
Citation: Qianzhong Ou. Nonexistence results for a fully nonlinear evolution inequality. Electronic Research Announcements, 2016, 23: 19-24. doi: 10.3934/era.2016.23.003
References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,, Acta Math., 155 (1985), 261.  doi: 10.1007/BF02392544.  Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problems for $u_t=\Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109.   Google Scholar

[3]

K. Hayakawa, On the nonexistence of global solutions of some semilinear parabolic equations,, Proc. Japan Acad., 49 (1973), 503.  doi: 10.3792/pja/1195519254.  Google Scholar

[4]

D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[5]

E. Mitidieri and S. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities,, Milan J. Math., 72 (2004), 129.  doi: 10.1007/s00032-004-0032-7.  Google Scholar

[6]

Q. Ou, Nonexistence results for Hessian inequality,, Methods Appl. Anal., 17 (2010), 213.  doi: 10.4310/MAA.2010.v17.n2.a5.  Google Scholar

[7]

N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[8]

N. C. Phuc and I. E. Verbitsky, Local integral estimates and removable singularities for quasilinear and Hessian equations with nonlinear source terms,, Comm. Partial Differential Equations, 31 (2006), 1779.  doi: 10.1080/03605300600783549.  Google Scholar

[9]

N. Trudinger and X.-J. Wang, Hessian measures. I. Dedicated to Olga Ladyzhenskaya,, Topo. Methods Nonlinear Anal., 10 (1997), 225.   Google Scholar

[10]

N. Trudinger and X.-J. Wang, Hessian measures. II,, Ann. of Math. (2), 150 (1999), 579.  doi: 10.2307/121089.  Google Scholar

[11]

N. Trudinger and X.-J. Wang, Hessian measures. III,, J. Funct. Anal., 193 (2002), 1.  doi: 10.1006/jfan.2001.3925.  Google Scholar

show all references

References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,, Acta Math., 155 (1985), 261.  doi: 10.1007/BF02392544.  Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problems for $u_t=\Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109.   Google Scholar

[3]

K. Hayakawa, On the nonexistence of global solutions of some semilinear parabolic equations,, Proc. Japan Acad., 49 (1973), 503.  doi: 10.3792/pja/1195519254.  Google Scholar

[4]

D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[5]

E. Mitidieri and S. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities,, Milan J. Math., 72 (2004), 129.  doi: 10.1007/s00032-004-0032-7.  Google Scholar

[6]

Q. Ou, Nonexistence results for Hessian inequality,, Methods Appl. Anal., 17 (2010), 213.  doi: 10.4310/MAA.2010.v17.n2.a5.  Google Scholar

[7]

N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[8]

N. C. Phuc and I. E. Verbitsky, Local integral estimates and removable singularities for quasilinear and Hessian equations with nonlinear source terms,, Comm. Partial Differential Equations, 31 (2006), 1779.  doi: 10.1080/03605300600783549.  Google Scholar

[9]

N. Trudinger and X.-J. Wang, Hessian measures. I. Dedicated to Olga Ladyzhenskaya,, Topo. Methods Nonlinear Anal., 10 (1997), 225.   Google Scholar

[10]

N. Trudinger and X.-J. Wang, Hessian measures. II,, Ann. of Math. (2), 150 (1999), 579.  doi: 10.2307/121089.  Google Scholar

[11]

N. Trudinger and X.-J. Wang, Hessian measures. III,, J. Funct. Anal., 193 (2002), 1.  doi: 10.1006/jfan.2001.3925.  Google Scholar

[1]

Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131

[2]

Thabet Abdeljawad. Fractional operators with boundary points dependent kernels and integration by parts. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 351-375. doi: 10.3934/dcdss.2020020

[3]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[4]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[5]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[6]

Xian-gao Liu, Xiaotao Zhang. Liouville theorem for MHD system and its applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2329-2350. doi: 10.3934/cpaa.2018111

[7]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[8]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[9]

Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

[10]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[11]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[12]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[13]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[14]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[15]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[16]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[17]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[18]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

[19]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

[20]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]