
-
Previous Article
Equational theories of unstable involution semigroups
- ERA-MS Home
- This Volume
- Next Article
Desingularization of surface maps
1. | Department of Mathematics, Tufts University, Medford, MA 02155, USA |
2. | IMPA, Estrada Dona Castorina 110, Rio de Janeiro, Brasil 22460-320 |
We prove a result for maps of surfaces that illustrates how singularhyperbolic flows can be desingularized if a global section can be collapsed to a surface along stable leaves.
References:
[1] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, Ⅲ, Springer-Verlag, Berlin, 2005. |
[2] |
C. Bonatti, A. Pumariño and M. Viana,
Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Paris Sér. I Math., 325 (1997), 883-888.
doi: 10.1016/S0764-4442(97)80131-0. |
[3] |
R. J. Daverman and G. A. Venema, Embeddings in Manifolds, Graduate Studies in Mathematics, 106, American Mathematical Society, Providence, RI, 2009.
doi: 10.1090/gsm/106. |
[4] |
B. Hasselblatt and A. Katok, A First Course in Dynamics. With a Panorama of Recent Developments, Cambridge University Press, New York, 2003. |
[5] |
C. A. Morales and M. J. Pacifico, Strange attractors arising from hyperbolic flows, preprint. |
[6] |
C. A. Morales, M. J. Pacifico and E. R. Pujals,
Global attractors from the explosion of singular cycles, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 1317-1322.
doi: 10.1016/S0764-4442(97)82362-2. |
[7] |
C. A. Morales, M. J. Pacifico and E. R. Pujals,
Singular Hyperbolic Systems, Proc. Amer. Math. Soc., 127 (1999), 3393-3401.
doi: 10.1090/S0002-9939-99-04936-9. |
[8] |
R. Metzger and C. Morales,
Sectional-Hyperbolic Systems, Ergodic Theory Dynam. Systems, 28 (2008), 1587-1597.
doi: 10.1017/S0143385707000995. |
[9] |
S. Newhouse, On simple arcs between structurally stable flows, in Dynamical SystemsWarwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975,209-233. |
[10] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
show all references
References:
[1] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, Ⅲ, Springer-Verlag, Berlin, 2005. |
[2] |
C. Bonatti, A. Pumariño and M. Viana,
Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Paris Sér. I Math., 325 (1997), 883-888.
doi: 10.1016/S0764-4442(97)80131-0. |
[3] |
R. J. Daverman and G. A. Venema, Embeddings in Manifolds, Graduate Studies in Mathematics, 106, American Mathematical Society, Providence, RI, 2009.
doi: 10.1090/gsm/106. |
[4] |
B. Hasselblatt and A. Katok, A First Course in Dynamics. With a Panorama of Recent Developments, Cambridge University Press, New York, 2003. |
[5] |
C. A. Morales and M. J. Pacifico, Strange attractors arising from hyperbolic flows, preprint. |
[6] |
C. A. Morales, M. J. Pacifico and E. R. Pujals,
Global attractors from the explosion of singular cycles, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 1317-1322.
doi: 10.1016/S0764-4442(97)82362-2. |
[7] |
C. A. Morales, M. J. Pacifico and E. R. Pujals,
Singular Hyperbolic Systems, Proc. Amer. Math. Soc., 127 (1999), 3393-3401.
doi: 10.1090/S0002-9939-99-04936-9. |
[8] |
R. Metzger and C. Morales,
Sectional-Hyperbolic Systems, Ergodic Theory Dynam. Systems, 28 (2008), 1587-1597.
doi: 10.1017/S0143385707000995. |
[9] |
S. Newhouse, On simple arcs between structurally stable flows, in Dynamical SystemsWarwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975,209-233. |
[10] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[1] |
Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029 |
[2] |
Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175 |
[3] |
Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819 |
[4] |
Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509 |
[5] |
Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403 |
[6] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[7] |
Arno Berger. On finite-time hyperbolicity. Communications on Pure and Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 |
[8] |
Christian Bonatti, Shaobo Gan, Dawei Yang. On the hyperbolicity of homoclinic classes. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1143-1162. doi: 10.3934/dcds.2009.25.1143 |
[9] |
Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048 |
[10] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[11] |
Zhenning Cai, Yuwei Fan, Ruo Li. On hyperbolicity of 13-moment system. Kinetic and Related Models, 2014, 7 (3) : 415-432. doi: 10.3934/krm.2014.7.415 |
[12] |
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187 |
[13] |
Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121 |
[14] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[15] |
Yi Shi, Shaobo Gan, Lan Wen. On the singular-hyperbolicity of star flows. Journal of Modern Dynamics, 2014, 8 (2) : 191-219. doi: 10.3934/jmd.2014.8.191 |
[16] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[17] |
Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55 |
[18] |
Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349 |
[19] |
Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405 |
[20] |
Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641 |
2020 Impact Factor: 0.929
Tools
Article outline
Figures and Tables
[Back to Top]