\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations

The author would like to thank her supervisor Prof. Zhongrui Shi, who supported her throughout her paper with his knowledge, patience and excellent guidance.
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we study the Dirichlet boundary value problem of a class of nonlinear parabolic equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.

    Mathematics Subject Classification: 35K55(Primary), 35K61(Secondary), 46B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002.
    [2] J. Alexopoulos, de la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces, Quaestiones Math., 17 (1994), 231-248.  doi: 10.1080/16073606.1994.9631762.
    [3] R. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.
    [4] J. M. Ball and F. Murat, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., 107 (1989), 655-663.  doi: 10.2307/2048162.
    [5] P. ClémentM. García-HuidobroR. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11 (2000), 33-62.  doi: 10.1007/s005260050002.
    [6] Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.
    [7] L. Diening, Theoerical and Numerical Results for Electrorheological Fluids, Ph. D. Thesis, University of Freiburg, Germany, 2002.
    [8] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/cbms/074.
    [9] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.  doi: 10.1016/j.jmaa.2009.12.039.
    [10] M. Fuchs and L. Gongbao, Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal., 3 (1998), 41-64.  doi: 10.1155/S1085337598000438.
    [11] M. Fuchs and V. Osmolovski, Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwendungen, 17 (1998), 393-415.  doi: 10.4171/ZAA/829.
    [12] N. Fukagai and K. Narukawa, Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J., 25 (1995), 19-41. 
    [13] Z. Feng and Z. Yin, On weak solutions for a class of nonlinear parabolic equations related to image analysis, Nonlinear Anal., 71 (2009), 2506-2517.  doi: 10.1016/j.na.2009.01.087.
    [14] P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickeninig under different stimulus, Math. Models Methods Appl. Sci., 18 (2008), 1073-1092.  doi: 10.1142/S0218202508002954.
    [15] M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Marcel Dekker, Inc., New York, 2002. doi: 10.1201/9780203910863.
    [16] K. R. Rajagopal and M. Ružička, Mathematical modelling of electrorheological fluids, Continuum Mech. Thermodyn., 13 (2001), 59-78. 
    [17] M. Saadoune and M. Valadier, Extraction of ''good" subsequence from a bounded sequence of integrable functions, J. Convex Anal., 2 (1995), 345-357. 
    [18] C. Wu, Convex Functions and Orlicz Spaces, Science Press, Beijing, 1961.
    [19] L. Wang and S. Zhou, Existence and uniqueness of weak solutions for a nonlinear parabolic equation related to image analysis, J. Partial Differential Equations, 19 (2006), 97-112. 
    [20] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 9 (1987), 33-66.  doi: 10.1070/IM1987v029n01ABEH000958.
  • 加载中
SHARE

Article Metrics

HTML views(4259) PDF downloads(459) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return