2017, 24: 38-52. doi: 10.3934/era.2017.24.005

Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations

Department of Mathematics, Shanghai University, Shanghai 200444, China

Received  December 16, 2016 Revised  April 30, 2017 Published  June 2017

Fund Project: The author would like to thank her supervisor Prof. Zhongrui Shi, who supported her throughout her paper with his knowledge, patience and excellent guidance.

In this paper, we study the Dirichlet boundary value problem of a class of nonlinear parabolic equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.

Citation: Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005
References:
[1]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002.  Google Scholar

[2]

J. Alexopoulos, de la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces, Quaestiones Math., 17 (1994), 231-248.  doi: 10.1080/16073606.1994.9631762.  Google Scholar

[3]

R. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.  Google Scholar

[4]

J. M. Ball and F. Murat, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., 107 (1989), 655-663.  doi: 10.2307/2048162.  Google Scholar

[5]

P. ClémentM. García-HuidobroR. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11 (2000), 33-62.  doi: 10.1007/s005260050002.  Google Scholar

[6]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[7]

L. Diening, Theoerical and Numerical Results for Electrorheological Fluids, Ph. D. Thesis, University of Freiburg, Germany, 2002. Google Scholar

[8]

L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/cbms/074.  Google Scholar

[9]

G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.  doi: 10.1016/j.jmaa.2009.12.039.  Google Scholar

[10]

M. Fuchs and L. Gongbao, Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal., 3 (1998), 41-64.  doi: 10.1155/S1085337598000438.  Google Scholar

[11]

M. Fuchs and V. Osmolovski, Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwendungen, 17 (1998), 393-415.  doi: 10.4171/ZAA/829.  Google Scholar

[12]

N. Fukagai and K. Narukawa, Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J., 25 (1995), 19-41.   Google Scholar

[13]

Z. Feng and Z. Yin, On weak solutions for a class of nonlinear parabolic equations related to image analysis, Nonlinear Anal., 71 (2009), 2506-2517.  doi: 10.1016/j.na.2009.01.087.  Google Scholar

[14]

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickeninig under different stimulus, Math. Models Methods Appl. Sci., 18 (2008), 1073-1092.  doi: 10.1142/S0218202508002954.  Google Scholar

[15]

M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Marcel Dekker, Inc., New York, 2002. doi: 10.1201/9780203910863.  Google Scholar

[16]

K. R. Rajagopal and M. Ružička, Mathematical modelling of electrorheological fluids, Continuum Mech. Thermodyn., 13 (2001), 59-78.   Google Scholar

[17]

M. Saadoune and M. Valadier, Extraction of ''good" subsequence from a bounded sequence of integrable functions, J. Convex Anal., 2 (1995), 345-357.   Google Scholar

[18]

C. Wu, Convex Functions and Orlicz Spaces, Science Press, Beijing, 1961. Google Scholar

[19]

L. Wang and S. Zhou, Existence and uniqueness of weak solutions for a nonlinear parabolic equation related to image analysis, J. Partial Differential Equations, 19 (2006), 97-112.   Google Scholar

[20]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 9 (1987), 33-66.  doi: 10.1070/IM1987v029n01ABEH000958.  Google Scholar

show all references

References:
[1]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002.  Google Scholar

[2]

J. Alexopoulos, de la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces, Quaestiones Math., 17 (1994), 231-248.  doi: 10.1080/16073606.1994.9631762.  Google Scholar

[3]

R. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.  Google Scholar

[4]

J. M. Ball and F. Murat, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., 107 (1989), 655-663.  doi: 10.2307/2048162.  Google Scholar

[5]

P. ClémentM. García-HuidobroR. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11 (2000), 33-62.  doi: 10.1007/s005260050002.  Google Scholar

[6]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[7]

L. Diening, Theoerical and Numerical Results for Electrorheological Fluids, Ph. D. Thesis, University of Freiburg, Germany, 2002. Google Scholar

[8]

L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/cbms/074.  Google Scholar

[9]

G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.  doi: 10.1016/j.jmaa.2009.12.039.  Google Scholar

[10]

M. Fuchs and L. Gongbao, Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal., 3 (1998), 41-64.  doi: 10.1155/S1085337598000438.  Google Scholar

[11]

M. Fuchs and V. Osmolovski, Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwendungen, 17 (1998), 393-415.  doi: 10.4171/ZAA/829.  Google Scholar

[12]

N. Fukagai and K. Narukawa, Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J., 25 (1995), 19-41.   Google Scholar

[13]

Z. Feng and Z. Yin, On weak solutions for a class of nonlinear parabolic equations related to image analysis, Nonlinear Anal., 71 (2009), 2506-2517.  doi: 10.1016/j.na.2009.01.087.  Google Scholar

[14]

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickeninig under different stimulus, Math. Models Methods Appl. Sci., 18 (2008), 1073-1092.  doi: 10.1142/S0218202508002954.  Google Scholar

[15]

M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Marcel Dekker, Inc., New York, 2002. doi: 10.1201/9780203910863.  Google Scholar

[16]

K. R. Rajagopal and M. Ružička, Mathematical modelling of electrorheological fluids, Continuum Mech. Thermodyn., 13 (2001), 59-78.   Google Scholar

[17]

M. Saadoune and M. Valadier, Extraction of ''good" subsequence from a bounded sequence of integrable functions, J. Convex Anal., 2 (1995), 345-357.   Google Scholar

[18]

C. Wu, Convex Functions and Orlicz Spaces, Science Press, Beijing, 1961. Google Scholar

[19]

L. Wang and S. Zhou, Existence and uniqueness of weak solutions for a nonlinear parabolic equation related to image analysis, J. Partial Differential Equations, 19 (2006), 97-112.   Google Scholar

[20]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 9 (1987), 33-66.  doi: 10.1070/IM1987v029n01ABEH000958.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[12]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[13]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[14]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[15]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[16]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[17]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[18]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[19]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[20]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 0.5

Article outline

[Back to Top]