-
Previous Article
Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras
- ERA-MS Home
- This Volume
-
Next Article
Sharpness of the Brascamp–Lieb inequality in Lorentz spaces
A note on parallelizable dynamical systems
1. | Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR, Brasil |
2. | Departamento de Matemática, Universidade Tecnolgica Federal do Paraná, Campo Mourõ-PR, Brasil |
Hájek [
References:
[1] |
N. P. Bhatia and G. P. Szegö,
Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970. |
[2] |
J. Dugundji and H. A. Antosiewicz,
Parallelizable flows and Lyapunov's second method, Ann. of Math., 73 (1961), 543-555.
doi: 10.2307/1970316. |
[3] |
O. Hájek,
Parallelizability revisited, Proc. Amer. Math. Soc., 27 (1971), 77-84.
doi: 10.1090/S0002-9939-1971-0271925-7. |
[4] |
D. Husemoller,
Fibre Bundles, Graduate Texts in Mathematics, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4757-2261-1. |
[5] |
N. Steenrod,
The Topology of Fibre Bundles, Princeton University Press, Princeton, 1951. |
show all references
References:
[1] |
N. P. Bhatia and G. P. Szegö,
Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970. |
[2] |
J. Dugundji and H. A. Antosiewicz,
Parallelizable flows and Lyapunov's second method, Ann. of Math., 73 (1961), 543-555.
doi: 10.2307/1970316. |
[3] |
O. Hájek,
Parallelizability revisited, Proc. Amer. Math. Soc., 27 (1971), 77-84.
doi: 10.1090/S0002-9939-1971-0271925-7. |
[4] |
D. Husemoller,
Fibre Bundles, Graduate Texts in Mathematics, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4757-2261-1. |
[5] |
N. Steenrod,
The Topology of Fibre Bundles, Princeton University Press, Princeton, 1951. |
[1] |
Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004 |
[2] |
V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44. |
[3] |
Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399 |
[4] |
Javier Fernández, Marcela Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 433-444. doi: 10.3934/jgm.2013.5.433 |
[5] |
Marco Castrillón López, Pedro Luis García Pérez. The problem of Lagrange on principal bundles under a subgroup of symmetries. Journal of Geometric Mechanics, 2019, 11 (4) : 539-552. doi: 10.3934/jgm.2019026 |
[6] |
J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81 |
[7] |
François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39 |
[8] |
Eckhard Meinrenken. Quotients of double vector bundles and multigraded bundles. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021027 |
[9] |
Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069 |
[10] |
Charles Curry, Stephen Marsland, Robert I McLachlan. Principal symmetric space analysis. Journal of Computational Dynamics, 2019, 6 (2) : 251-276. doi: 10.3934/jcd.2019013 |
[11] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure and Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[12] |
Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3341-3367. doi: 10.3934/dcdsb.2017140 |
[13] |
Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561 |
[14] |
Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005 |
[15] |
Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665 |
[16] |
Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077 |
[17] |
Alexandra Monzner, Nicolas Vichery, Frol Zapolsky. Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization. Journal of Modern Dynamics, 2012, 6 (2) : 205-249. doi: 10.3934/jmd.2012.6.205 |
[18] |
Radu Pantilie. On the embeddings of the Riemann sphere with nonnegative normal bundles. Electronic Research Announcements, 2018, 25: 87-95. doi: 10.3934/era.2018.25.009 |
[19] |
J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177 |
[20] |
Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 |
2020 Impact Factor: 0.929
Tools
Article outline
[Back to Top]