2017, 24: 78-86. doi: 10.3934/era.2017.24.009

On matrix wreath products of algebras

1. 

Department of Mathematics, King Abdulaziz University, Jeddah, SA

2. 

Department of Mathematics, Ohio University, Athens, USA

3. 

Department of Mathematics, University of California, San Diego, USA

Received  April 23, 2017 Published  August 2017

Fund Project: The fourth author gratefully acknowledges the support from the NSF. The authors are grateful to the referees for numerous valuable comments.

We introduce a new construction of matrix wreath products of algebras that is similar to the construction of wreath products of groups introduced by L. Kaloujnine and M. Krasner [17]. We then illustrate its usefulness by proving embedding theorems into finitely generated algebras and constructing nil algebras with prescribed Gelfand-Kirillov dimension.

Citation: Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009
References:
[1]

A. Alahmadi and H. Alsulami, Wreath products by a Leavitt path algebra and affinizations, Internat. J. Algebra Comput., 24 (2014), 707-714.  doi: 10.1142/S0218196714500295.  Google Scholar

[2]

A. S. Amitsur, Algebras over infinite fields, Proc. Amer. Math. Soc., 7 (1956), 35-48.  doi: 10.1090/S0002-9939-1956-0075933-2.  Google Scholar

[3]

L. Bartholdi, Self-similar Lie algebras, J. Eur. Math. Soc. (JEMS), 17 (2015), 3113-3151.  doi: 10.4171/JEMS/581.  Google Scholar

[4]

L. Bartholdi and A. Erschler, Imbeddings into groups of intermediate growth, Groups Geom. Dyn., 8 (2014), 605-620.  doi: 10.4171/GGD/241.  Google Scholar

[5]

L. Bartholdi and A. Smoktunowicz, Images of Golod-Shafarevich algebras with small growth, Q. J. Math., 65 (2014), 421-438.  doi: 10.1093/qmath/hat005.  Google Scholar

[6]

J. P. Bell, Examples in finite Gel$\prime$ fand-Kirillov dimension, J. Algebra, 263 (2003), 159-175.  doi: 10.1016/S0021-8693(03)00021-8.  Google Scholar

[7]

J. P. Bell and L. W. Small, A question of Kaplansky, J. Algebra, 258 (2002), 386-388.  doi: 10.1016/S0021-8693(02)00513-6.  Google Scholar

[8]

J. P. Bell, L. W. Small and A. Smoktunowicz, Primitive algebraic algebras of polynomially bounded growth, in New Trends in Noncommutative Algebra, Contemp. Math., 562, Amer. Math. Soc., Providence, RI, 2012, 41–52. doi: 10.1090/conm/562/11129.  Google Scholar

[9]

K. I. Beĭ dar, Radicals of finitely generated algebras, Uspekhi Mat. Nauk, 36 (1981), 203-204.   Google Scholar

[10]

W. Borho and H. Kraft, über die Gelfand-Kirillov-Dimension, Math. Ann., 220 (1976), 1-24.  doi: 10.1007/BF01354525.  Google Scholar

[11]

E. S. Golod, On nil-algebras and finitely approximable $p$ -groups, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 273-276.   Google Scholar

[12]

E. S. Golod and I. R. Šafarevič, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 261-272.   Google Scholar

[13]

B. Greenfeld, Prime and primitive algebras with prescribed growth types, Israel J. Math., 220 (2017), 161-174.  doi: 10.1007/s11856-017-1513-z.  Google Scholar

[14]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.   Google Scholar

[15]

G. HigmanB. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc., 24 (1949), 247-254.  doi: 10.1112/jlms/s1-24.4.247.  Google Scholar

[16]

N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, Vol. 37, Revised edition, American Mathematical Society, Providence, R. I., 1964.  Google Scholar

[17]

L. Kaloujnine and M. Krasner, Le produit complet des groupes de permutations et le probléme d'extension des groupes, C. R. Acad. Sci. Paris, 227 (1948), 806-808.   Google Scholar

[18]

I. Kaplansky, ''Problems in the theory of rings'' revisited, Amer. Math. Monthly, 77 (1970), 445-454.  doi: 10.2307/2317376.  Google Scholar

[19]

T. H. Lenagan and A. Smoktunowicz, An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension, J. Amer. Math. Soc., 20 (2007), 989-1001.  doi: 10.1090/S0894-0347-07-00565-6.  Google Scholar

[20]

T. H. LenaganA. Smoktunowicz and A. A. Young, Nil algebras with restricted growth, Proc. Edinb. Math. Soc.(2), 55 (2012), 461-475.  doi: 10.1017/S0013091510001100.  Google Scholar

[21]

A. I. Mal$\prime$ cev, On a representation of nonassociative rings, Uspehi Matem. Nauk (N.S.), 7 (1952), 181-185.   Google Scholar

[22]

V. T. Markov, Matrix algebras with two generators and the embedding of PI-algebras, Uspekhi Mat. Nauk, 47 (1992), 199-200.   Google Scholar

[23]

A. Yu. Olshanskii and D. V. Osin, A quasi-isometric embedding theorem for groups, Duke Math. J., 162 (2013), 1621-1648.  doi: 10.1215/00127094-2266251.  Google Scholar

[24]

V. M. PetrogradskyYu. P. Razmyslov and E. O. Shishkin, Wreath products and Kaluzhnin-Krasner embedding for Lie algebras, Proc. Amer. Math. Soc., 135 (2007), 625-636.  doi: 10.1090/S0002-9939-06-08502-9.  Google Scholar

[25]

R. E. Phillips, Embedding methods for periodic groups, Proc. London Math. Soc.(3), 35 (1977), 238-256.  doi: 10.1112/plms/s3-35.2.238.  Google Scholar

[26]

A. I. Siř sov, On free Lie rings, Mat. Sb. N.S., 45(87) (1958), 113-122.   Google Scholar

[27]

A. L. Smel'kin, Wreath products of Lie algebras, and their application in group theory, Trudy Moskov. Mat. Obšč., 29 (1973), 247-260.   Google Scholar

[28]

M. K. Smith, Universal enveloping algebras with subexponential but not polynomially bounded growth, Proc. Amer. Math. Soc., 60 (1976), 22-24 (1977).  doi: 10.1090/S0002-9939-1976-0419534-5.  Google Scholar

[29]

A. Smoktunowicz and L. Bartholdi, Jacobson radical non-nil algebras of Gel'fand-Kirillov dimension 2, Israel J. Math., 194 (2013), 597-608.  doi: 10.1007/s11856-012-0073-5.  Google Scholar

[30]

J. S. Wilson, Embedding theorems for residually finite groups, Math. Z., 174 (1980), 149-157.  doi: 10.1007/BF01293535.  Google Scholar

show all references

References:
[1]

A. Alahmadi and H. Alsulami, Wreath products by a Leavitt path algebra and affinizations, Internat. J. Algebra Comput., 24 (2014), 707-714.  doi: 10.1142/S0218196714500295.  Google Scholar

[2]

A. S. Amitsur, Algebras over infinite fields, Proc. Amer. Math. Soc., 7 (1956), 35-48.  doi: 10.1090/S0002-9939-1956-0075933-2.  Google Scholar

[3]

L. Bartholdi, Self-similar Lie algebras, J. Eur. Math. Soc. (JEMS), 17 (2015), 3113-3151.  doi: 10.4171/JEMS/581.  Google Scholar

[4]

L. Bartholdi and A. Erschler, Imbeddings into groups of intermediate growth, Groups Geom. Dyn., 8 (2014), 605-620.  doi: 10.4171/GGD/241.  Google Scholar

[5]

L. Bartholdi and A. Smoktunowicz, Images of Golod-Shafarevich algebras with small growth, Q. J. Math., 65 (2014), 421-438.  doi: 10.1093/qmath/hat005.  Google Scholar

[6]

J. P. Bell, Examples in finite Gel$\prime$ fand-Kirillov dimension, J. Algebra, 263 (2003), 159-175.  doi: 10.1016/S0021-8693(03)00021-8.  Google Scholar

[7]

J. P. Bell and L. W. Small, A question of Kaplansky, J. Algebra, 258 (2002), 386-388.  doi: 10.1016/S0021-8693(02)00513-6.  Google Scholar

[8]

J. P. Bell, L. W. Small and A. Smoktunowicz, Primitive algebraic algebras of polynomially bounded growth, in New Trends in Noncommutative Algebra, Contemp. Math., 562, Amer. Math. Soc., Providence, RI, 2012, 41–52. doi: 10.1090/conm/562/11129.  Google Scholar

[9]

K. I. Beĭ dar, Radicals of finitely generated algebras, Uspekhi Mat. Nauk, 36 (1981), 203-204.   Google Scholar

[10]

W. Borho and H. Kraft, über die Gelfand-Kirillov-Dimension, Math. Ann., 220 (1976), 1-24.  doi: 10.1007/BF01354525.  Google Scholar

[11]

E. S. Golod, On nil-algebras and finitely approximable $p$ -groups, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 273-276.   Google Scholar

[12]

E. S. Golod and I. R. Šafarevič, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 261-272.   Google Scholar

[13]

B. Greenfeld, Prime and primitive algebras with prescribed growth types, Israel J. Math., 220 (2017), 161-174.  doi: 10.1007/s11856-017-1513-z.  Google Scholar

[14]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.   Google Scholar

[15]

G. HigmanB. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc., 24 (1949), 247-254.  doi: 10.1112/jlms/s1-24.4.247.  Google Scholar

[16]

N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, Vol. 37, Revised edition, American Mathematical Society, Providence, R. I., 1964.  Google Scholar

[17]

L. Kaloujnine and M. Krasner, Le produit complet des groupes de permutations et le probléme d'extension des groupes, C. R. Acad. Sci. Paris, 227 (1948), 806-808.   Google Scholar

[18]

I. Kaplansky, ''Problems in the theory of rings'' revisited, Amer. Math. Monthly, 77 (1970), 445-454.  doi: 10.2307/2317376.  Google Scholar

[19]

T. H. Lenagan and A. Smoktunowicz, An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension, J. Amer. Math. Soc., 20 (2007), 989-1001.  doi: 10.1090/S0894-0347-07-00565-6.  Google Scholar

[20]

T. H. LenaganA. Smoktunowicz and A. A. Young, Nil algebras with restricted growth, Proc. Edinb. Math. Soc.(2), 55 (2012), 461-475.  doi: 10.1017/S0013091510001100.  Google Scholar

[21]

A. I. Mal$\prime$ cev, On a representation of nonassociative rings, Uspehi Matem. Nauk (N.S.), 7 (1952), 181-185.   Google Scholar

[22]

V. T. Markov, Matrix algebras with two generators and the embedding of PI-algebras, Uspekhi Mat. Nauk, 47 (1992), 199-200.   Google Scholar

[23]

A. Yu. Olshanskii and D. V. Osin, A quasi-isometric embedding theorem for groups, Duke Math. J., 162 (2013), 1621-1648.  doi: 10.1215/00127094-2266251.  Google Scholar

[24]

V. M. PetrogradskyYu. P. Razmyslov and E. O. Shishkin, Wreath products and Kaluzhnin-Krasner embedding for Lie algebras, Proc. Amer. Math. Soc., 135 (2007), 625-636.  doi: 10.1090/S0002-9939-06-08502-9.  Google Scholar

[25]

R. E. Phillips, Embedding methods for periodic groups, Proc. London Math. Soc.(3), 35 (1977), 238-256.  doi: 10.1112/plms/s3-35.2.238.  Google Scholar

[26]

A. I. Siř sov, On free Lie rings, Mat. Sb. N.S., 45(87) (1958), 113-122.   Google Scholar

[27]

A. L. Smel'kin, Wreath products of Lie algebras, and their application in group theory, Trudy Moskov. Mat. Obšč., 29 (1973), 247-260.   Google Scholar

[28]

M. K. Smith, Universal enveloping algebras with subexponential but not polynomially bounded growth, Proc. Amer. Math. Soc., 60 (1976), 22-24 (1977).  doi: 10.1090/S0002-9939-1976-0419534-5.  Google Scholar

[29]

A. Smoktunowicz and L. Bartholdi, Jacobson radical non-nil algebras of Gel'fand-Kirillov dimension 2, Israel J. Math., 194 (2013), 597-608.  doi: 10.1007/s11856-012-0073-5.  Google Scholar

[30]

J. S. Wilson, Embedding theorems for residually finite groups, Math. Z., 174 (1980), 149-157.  doi: 10.1007/BF01293535.  Google Scholar

[1]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[4]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[5]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[6]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[7]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[8]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[9]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[10]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[11]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[12]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[13]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[14]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[15]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[16]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[17]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[18]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[19]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[20]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021005

2019 Impact Factor: 0.5

Article outline

[Back to Top]